Suppr超能文献

一类具有未知方向控制增益和输入饱和的非线性系统的自适应动态面控制。

Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation.

出版信息

IEEE Trans Cybern. 2015 Apr;45(4):728-41. doi: 10.1109/TCYB.2014.2334695. Epub 2014 Jul 15.

Abstract

In this paper, adaptive neural network based dynamic surface control (DSC) is developed for a class of nonlinear strict-feedback systems with unknown direction control gains and input saturation. A Gaussian error function based saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided by utilizing DSC. Based on backstepping combined with DSC, adaptive radial basis function neural network control is developed to guarantee that all the signals in the closed-loop system are globally bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design parameters. Simulation results demonstrate the effectiveness of the proposed approach and the good performance is guaranteed even though both the saturation constraints and the wrong control direction are occurred.

摘要

本文针对一类具有未知方向控制增益和输入饱和的非线性严格反馈系统,提出了一种基于自适应神经网络的动态面控制(DSC)方法。采用基于高斯误差函数的饱和模型,使得反步技术可用于控制设计。通过利用 DSC,避免了传统反步设计中复杂度的爆炸。基于反步与 DSC 的结合,提出了自适应径向基函数神经网络控制方法,通过适当选择设计参数,保证闭环系统中所有信号全局有界,跟踪误差收敛到原点的小邻域内。仿真结果验证了所提方法的有效性,即使存在饱和约束和错误的控制方向,也能保证良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验