Suppr超能文献

一种用于改进基于非靶向液相色谱-高分辨率质谱的代谢组学研究的新型稳定同位素标记辅助工作流程。

A novel stable isotope labelling assisted workflow for improved untargeted LC-HRMS based metabolomics research.

作者信息

Bueschl Christoph, Kluger Bernhard, Lemmens Marc, Adam Gerhard, Wiesenberger Gerlinde, Maschietto Valentina, Marocco Adriano, Strauss Joseph, Bödi Stephan, Thallinger Gerhard G, Krska Rudolf, Schuhmacher Rainer

机构信息

Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria.

出版信息

Metabolomics. 2014;10(4):754-769. doi: 10.1007/s11306-013-0611-0. Epub 2013 Dec 4.

Abstract

Many untargeted LC-ESI-HRMS based metabolomics studies are still hampered by the large proportion of non-biological sample derived signals included in the generated raw data. Here, a novel, powerful stable isotope labelling (SIL)-based metabolomics workflow is presented, which facilitates global metabolome extraction, improved metabolite annotation and metabolome wide internal standardisation (IS). The general concept is exemplified with two different cultivation variants, (1) co-cultivation of the plant pathogenic fungi on non-labelled and highly C enriched culture medium and (2) experimental cultivation under native conditions and use of globally U-C labelled biological reference samples as exemplified with maize and wheat. Subsequent to LC-HRMS analysis of mixtures of labelled and non-labelled samples, two-dimensional data filtering of SIL specific isotopic patterns is performed to better extract truly biological derived signals together with the corresponding number of carbon atoms of each metabolite ion. Finally, feature pairs are convoluted to feature groups each representing a single metabolite. Moreover, the correction of unequal matrix effects in different sample types and the improvement of relative metabolite quantification with metabolome wide IS are demonstrated for the experiment. Data processing employing the presented workflow revealed about 300 SIL derived feature pairs corresponding to 87-135 metabolites in samples and around 800 feature pairs corresponding to roughly 350 metabolites in wheat samples. SIL assisted IS, by the use of globally U-C labelled biological samples, reduced the median CV value from 7.1 to 3.6 % for technical replicates and from 15.1 to 10.8 % for biological replicates in the respective samples.

摘要

许多基于液相色谱-电喷雾-高分辨质谱的非靶向代谢组学研究仍受限于原始数据中包含的大量非生物样品衍生信号。在此,我们提出了一种基于新型、强大的稳定同位素标记(SIL)的代谢组学工作流程,该流程有助于全局代谢组提取、改进代谢物注释以及代谢组范围的内标标准化(IS)。通过两种不同的培养变体对这一总体概念进行了举例说明,(1)在未标记且高度富含碳的培养基上共同培养植物病原真菌,以及(2)在自然条件下进行实验培养,并使用全球均匀标记碳的生物参考样品,如玉米和小麦。在对标记和未标记样品的混合物进行液相色谱-高分辨质谱分析之后,对SIL特异性同位素模式进行二维数据过滤,以更好地提取真正的生物衍生信号以及每个代谢物离子相应的碳原子数。最后,将特征对卷积为特征组,每个特征组代表一种单一代谢物。此外,还展示了针对该实验在不同样品类型中校正不等矩阵效应以及通过代谢组范围的内标改进相对代谢物定量的情况。采用所提出工作流程的数据处理揭示,在样品中约有300个SIL衍生特征对对应于87 - 135种代谢物,在小麦样品中约有800个特征对对应于约350种代谢物。通过使用全球均匀标记碳的生物样品,SIL辅助内标将技术重复的中位数CV值从7.1%降低到3.6%,将相应样品中生物重复的中位数CV值从15.1%降低到10.8%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5a/4098048/35e0e934c57c/11306_2013_611_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验