Suppr超能文献

不完全数据的统计方法:关于模型误设的一些结果

Statistical methods for incomplete data: Some results on model misspecification.

作者信息

McIsaac Michael, Cook R J

机构信息

1 Queen's University, Ontario, Canada.

2 University of Waterloo, Ontario, Canada.

出版信息

Stat Methods Med Res. 2017 Feb;26(1):248-267. doi: 10.1177/0962280214544251. Epub 2016 Jul 11.

Abstract

Inverse probability weighted estimating equations and multiple imputation are two of the most studied frameworks for dealing with incomplete data in clinical and epidemiological research. We examine the limiting behaviour of estimators arising from inverse probability weighted estimating equations, augmented inverse probability weighted estimating equations and multiple imputation when the requisite auxiliary models are misspecified. We compute limiting values for settings involving binary responses and covariates and illustrate the effects of model misspecification using simulations based on data from a breast cancer clinical trial. We demonstrate that, even when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented inverse probability weighted estimators are often smaller than the asymptotic biases of estimators arising from complete-case analyses, inverse probability weighting or multiple imputation. We further demonstrate that use of inverse probability weighting or multiple imputation with slightly misspecified auxiliary models can actually result in greater asymptotic bias than the use of naïve, complete case analyses. These asymptotic results are shown to be consistent with empirical results from simulation studies.

摘要

逆概率加权估计方程和多重填补是临床和流行病学研究中处理不完全数据的两个研究最多的框架。我们研究了在必要的辅助模型设定错误时,由逆概率加权估计方程、增强逆概率加权估计方程和多重填补产生的估计量的极限行为。我们计算了涉及二元响应和协变量的设定的极限值,并使用基于乳腺癌临床试验数据的模拟来说明模型设定错误的影响。我们证明,即使两个辅助模型都设定错误,双稳健增强逆概率加权估计量的渐近偏差通常也小于完全病例分析、逆概率加权或多重填补产生的估计量的渐近偏差。我们进一步证明,使用设定稍有错误的辅助模型的逆概率加权或多重填补实际上可能导致比使用简单的完全病例分析更大的渐近偏差。这些渐近结果与模拟研究的实证结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验