Suppr超能文献

用于人类成纤维细胞非病毒重编程的第二代密码子优化微型环状DNA(CoMiC)

Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

作者信息

Diecke Sebastian, Lisowski Leszek, Kooreman Nigel G, Wu Joseph C

机构信息

Lorry I. Lokey Stem Cell Research Building, Stanford University School of Medicine, 265 Campus Drive, Room G1105, Stanford, CA, 94305-5454, USA.

出版信息

Methods Mol Biol. 2014;1181:1-13. doi: 10.1007/978-1-4939-1047-2_1.

Abstract

The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

摘要

在体细胞中诱导多能性的能力是干细胞研究和再生医学领域最重要的科学成就之一。这项技术使研究人员能够在不涉及胚胎争议性使用的情况下获得多能干细胞,为疾病建模和药物筛选方法提供了一种新颖且强大的工具。然而,使用病毒来递送重编程基因和转录因子可能会导致其整合到宿主基因组中,并在靶细胞内引起随机突变,从而限制了这些细胞在下游应用中的使用。为克服这一限制,近来已开发出各种非整合技术,包括仙台病毒、信使核糖核酸、微型环状DNA和基于质粒的方法。利用新开发的密码子优化的四合一微型环状DNA(CoMiC),我们能够使用化学成分明确的培养基且无需饲养细胞来重编程人类成纤维细胞。

相似文献

6
Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.
Curr Protoc Hum Genet. 2015 Oct 6;87:21.2.1-21.2.21. doi: 10.1002/0471142905.hg2102s87.
8
A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors.
Genes (Basel). 2024 Apr 30;15(5):575. doi: 10.3390/genes15050575.
9
Induction of pluripotency in long-term cryopreserved human neonatal fibroblasts in feeder-free condition.
Cell Tissue Bank. 2017 Mar;18(1):45-52. doi: 10.1007/s10561-016-9602-5. Epub 2016 Nov 21.

本文引用的文献

3
A more efficient method to generate integration-free human iPS cells.
Nat Methods. 2011 May;8(5):409-12. doi: 10.1038/nmeth.1591. Epub 2011 Apr 3.
4
Methods for making induced pluripotent stem cells: reprogramming à la carte.
Nat Rev Genet. 2011 Apr;12(4):231-42. doi: 10.1038/nrg2937. Epub 2011 Feb 22.
5
Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming.
Mol Ther. 2011 Apr;19(4):782-9. doi: 10.1038/mt.2010.314. Epub 2011 Feb 1.
6
Induced pluripotency: history, mechanisms, and applications.
Genes Dev. 2010 Oct 15;24(20):2239-63. doi: 10.1101/gad.1963910.
7
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.
Cell Stem Cell. 2010 Nov 5;7(5):618-30. doi: 10.1016/j.stem.2010.08.012. Epub 2010 Sep 30.
8
A nonviral minicircle vector for deriving human iPS cells.
Nat Methods. 2010 Mar;7(3):197-9. doi: 10.1038/nmeth.1426. Epub 2010 Feb 7.
10
Generation of induced pluripotent stem cells using recombinant proteins.
Cell Stem Cell. 2009 May 8;4(5):381-4. doi: 10.1016/j.stem.2009.04.005. Epub 2009 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验