Diecke Sebastian, Lisowski Leszek, Kooreman Nigel G, Wu Joseph C
Lorry I. Lokey Stem Cell Research Building, Stanford University School of Medicine, 265 Campus Drive, Room G1105, Stanford, CA, 94305-5454, USA.
Methods Mol Biol. 2014;1181:1-13. doi: 10.1007/978-1-4939-1047-2_1.
The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.
在体细胞中诱导多能性的能力是干细胞研究和再生医学领域最重要的科学成就之一。这项技术使研究人员能够在不涉及胚胎争议性使用的情况下获得多能干细胞,为疾病建模和药物筛选方法提供了一种新颖且强大的工具。然而,使用病毒来递送重编程基因和转录因子可能会导致其整合到宿主基因组中,并在靶细胞内引起随机突变,从而限制了这些细胞在下游应用中的使用。为克服这一限制,近来已开发出各种非整合技术,包括仙台病毒、信使核糖核酸、微型环状DNA和基于质粒的方法。利用新开发的密码子优化的四合一微型环状DNA(CoMiC),我们能够使用化学成分明确的培养基且无需饲养细胞来重编程人类成纤维细胞。