Suppr超能文献

六倍体小麦对盐胁迫生理响应的进化。

Evolution of physiological responses to salt stress in hexaploid wheat.

机构信息

Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China;

Department of Agronomy, Jilin Agricultural University, Changchun 130118, China; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11882-7. doi: 10.1073/pnas.1412839111. Epub 2014 Jul 29.

Abstract

Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.

摘要

六倍体普通小麦(Triticum aestivum L.,基因组 BBAADD)通常比其四倍体小麦祖先(Triticum turgidum L.)更耐盐。然而,人们对这种特性的生理基础知之甚少,也不知道 allohexaploidization 及其随后的进化遗传变化对该特性发展的相对贡献。在这里,我们比较了合成 allohexaploid 小麦(neo-6x)与其四倍体(T. turgidum;BBAA)和二倍体(Aegilops tauschii;DD)亲本以及天然六倍体普通小麦(nat-6x)的耐盐性。我们研究了 92 种形态生理特性,并分析了主要耐盐基因高亲和钾转运蛋白 1;5(HKT1;5)的同源基因表达。我们观察到,在盐胁迫下,neo-6x 由于从 4x 亲本继承了有利的特性,如更高的发芽率,以及从 2x 亲本继承了更强的根钠离子保留能力,表现出比其两个亲本基因型更高的适应性。此外,负责将钠离子从木质部导管中去除的 D 亚基因组 HKT1;5 同源基因的表达在 allohexaploidization 后立即发生了转录重编程,即在 Ae. tauschii(2x)中表现为组成性高基础表达,而在 neo-6x 中表现为盐诱导表达。这一现象在 nat-6x 中也观察到。对 92 个特性的综合分析表明,在盐胁迫条件下,neo-6x 更类似于 2x 亲本,而不是 4x 亲本,这表明盐胁迫诱导了合成六倍体小麦中 D 亚基因组同源基因的增强表达。总的来说,研究结果表明,亚基因组的条件依赖性功能化可能有助于天然六倍体小麦的广泛适应性。

相似文献

1
Evolution of physiological responses to salt stress in hexaploid wheat.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11882-7. doi: 10.1073/pnas.1412839111. Epub 2014 Jul 29.
3
6
Evolution of the BBAA component of bread wheat during its history at the allohexaploid level.
Plant Cell. 2014 Jul;26(7):2761-76. doi: 10.1105/tpc.114.128439. Epub 2014 Jul 2.
7
Evolution and origin of bread wheat.
Plant Cell. 2022 Jul 4;34(7):2549-2567. doi: 10.1093/plcell/koac130.
8
Subgenome-biased expression and functional diversification of a Na/H antiporter homoeologs in salt tolerance of polyploid wheat.
Front Plant Sci. 2022 Dec 7;13:1072009. doi: 10.3389/fpls.2022.1072009. eCollection 2022.
9
Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation.
Nature. 2013 Apr 4;496(7443):91-5. doi: 10.1038/nature12028. Epub 2013 Mar 24.

引用本文的文献

2
Horizontally acquired CSP genes contribute to wheat adaptation and improvement.
Nat Plants. 2025 Apr;11(4):761-774. doi: 10.1038/s41477-025-01952-8. Epub 2025 Mar 27.
4
Genomic and evolutionary evidence for drought adaptation of allopolyploid Brachypodium hybridum.
J Exp Bot. 2025 Jul 2;76(10):2924-2938. doi: 10.1093/jxb/eraf128.
5
Soil Salinization and Ancient Hulled Wheat: A Study on Antioxidant Defense Mechanisms.
Plants (Basel). 2025 Feb 22;14(5):678. doi: 10.3390/plants14050678.
6
A gene expression atlas of across various tissues at transcript resolution.
Front Plant Sci. 2025 Feb 7;16:1500654. doi: 10.3389/fpls.2025.1500654. eCollection 2025.

本文引用的文献

1
The expression of salt tolerance from Triticum tauschii in hexaploid wheat.
Theor Appl Genet. 1992 Aug;84(5-6):714-9. doi: 10.1007/BF00224174.
3
Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis.
Science. 2013 Aug 9;341(6146):658-9. doi: 10.1126/science.1240561. Epub 2013 Jul 25.
4
Lessons from natural and artificial polyploids in higher plants.
Cytogenet Genome Res. 2013;140(2-4):204-25. doi: 10.1159/000353361. Epub 2013 Jun 28.
5
Polyploidy and its effect on evolutionary success: old questions revisited with new tools.
Heredity (Edinb). 2013 Feb;110(2):99-104. doi: 10.1038/hdy.2012.79. Epub 2012 Nov 14.
6
Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae).
Heredity (Edinb). 2013 Feb;110(2):160-70. doi: 10.1038/hdy.2012.77. Epub 2012 Nov 14.
7
The fate of duplicated genes in a polyploid plant genome.
Plant J. 2013 Jan;73(1):143-53. doi: 10.1111/tpj.12026. Epub 2012 Oct 22.
8
Insights from paleogenomic and population studies into the consequences of dosage sensitive gene expression in plants.
Curr Opin Plant Biol. 2012 Nov;15(5):544-8. doi: 10.1016/j.pbi.2012.08.005. Epub 2012 Aug 30.
9
Genomic asymmetry in allopolyploid plants: wheat as a model.
J Exp Bot. 2012 Sep;63(14):5045-59. doi: 10.1093/jxb/ers192. Epub 2012 Aug 1.
10
Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants.
Curr Opin Plant Biol. 2012 Apr;15(2):131-9. doi: 10.1016/j.pbi.2012.01.015. Epub 2012 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验