Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China;
Department of Agronomy, Jilin Agricultural University, Changchun 130118, China; and.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11882-7. doi: 10.1073/pnas.1412839111. Epub 2014 Jul 29.
Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.
六倍体普通小麦(Triticum aestivum L.,基因组 BBAADD)通常比其四倍体小麦祖先(Triticum turgidum L.)更耐盐。然而,人们对这种特性的生理基础知之甚少,也不知道 allohexaploidization 及其随后的进化遗传变化对该特性发展的相对贡献。在这里,我们比较了合成 allohexaploid 小麦(neo-6x)与其四倍体(T. turgidum;BBAA)和二倍体(Aegilops tauschii;DD)亲本以及天然六倍体普通小麦(nat-6x)的耐盐性。我们研究了 92 种形态生理特性,并分析了主要耐盐基因高亲和钾转运蛋白 1;5(HKT1;5)的同源基因表达。我们观察到,在盐胁迫下,neo-6x 由于从 4x 亲本继承了有利的特性,如更高的发芽率,以及从 2x 亲本继承了更强的根钠离子保留能力,表现出比其两个亲本基因型更高的适应性。此外,负责将钠离子从木质部导管中去除的 D 亚基因组 HKT1;5 同源基因的表达在 allohexaploidization 后立即发生了转录重编程,即在 Ae. tauschii(2x)中表现为组成性高基础表达,而在 neo-6x 中表现为盐诱导表达。这一现象在 nat-6x 中也观察到。对 92 个特性的综合分析表明,在盐胁迫条件下,neo-6x 更类似于 2x 亲本,而不是 4x 亲本,这表明盐胁迫诱导了合成六倍体小麦中 D 亚基因组同源基因的增强表达。总的来说,研究结果表明,亚基因组的条件依赖性功能化可能有助于天然六倍体小麦的广泛适应性。