Suppr超能文献

用于风力涡轮机噪声评估的自适应神经模糊方法。

Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

作者信息

Shamshirband Shahaboddin, Petković Dalibor, Hashim Roslan, Motamedi Shervin

机构信息

Department of Computer Science, Chalous Branch, Islamic Azad University (IAU), Chalous, Mazandaran, Iran; Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia.

University of Niš, Faculty of Mechanical Engineering, Deparment for Mechatronics and Control, Niš, Serbia.

出版信息

PLoS One. 2014 Jul 30;9(7):e103414. doi: 10.1371/journal.pone.0103414. eCollection 2014.

Abstract

Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

摘要

风力涡轮机噪声是风能广泛应用的主要障碍之一。噪声音调会大大增加烦恼因素以及对人类健康的负面影响。近年来,由于国家和国际层面提出的可持续能源目标促使风力涡轮机数量迅速增加,风力涡轮机产生的噪声烦恼已成为一个新出现的问题。到目前为止,风力涡轮机噪声的产生、传播和感知的所有方面尚未完全被理解。对于现代大型风力涡轮机,假设机械噪声已得到充分消除,叶片产生的气动噪声通常被认为是主要噪声源。气动噪声源可分为音调噪声、流入湍流噪声和翼型自噪声。许多分析和实验声学研究都针对风力涡轮机展开。由于通过数值方法或计算流体动力学(CFD)分析风力涡轮机噪声水平可能极具挑战性且耗时,因此软计算技术更受青睐。为了估计风力涡轮机的噪声水平,本文构建了一个利用自适应神经模糊推理系统(ANFIS)针对风速和声频模拟风力涡轮机噪声水平的过程。该智能估计器使用Matlab/Simulink实现,并对其性能进行了研究。本文给出的模拟结果表明了所开发方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c3/4116176/b1d39ba6a13a/pone.0103414.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验