Pottier Julien, Malenovský Zbyněk, Psomas Achilleas, Homolová Lucie, Schaepman Michael E, Choler Philippe, Thuiller Wilfried, Guisan Antoine, Zimmermann Niklaus E
Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland UREP, INRA, 63100 Clermont-Ferrand, France
Remote Sensing Laboratories, University of Zürich, 8057 Zürich, Switzerland School of Biological Sciences, University of Wollongong, Northfields Avenue, Sydney, New South Wales 2522, Australia.
Biol Lett. 2014 Jul;10(7). doi: 10.1098/rsbl.2014.0347.
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
利用航空成像光谱技术(AIS)进行遥感,已知可以获取生态系统的基本光学特性。然而,这些特性对于预测植物物种分布的价值仍不明确。在此,我们评估此类数据是否能为地形变量增添价值,以用于预测法国和瑞士高山草原的植物分布。我们用高光谱和高空间分辨率反射率数据拟合了统计模型,并测试了对叶片叶绿素含量、叶片含水量和叶面积指数敏感的四个光学指数。我们发现AIS数据在预测高山植物物种分布方面具有一定的附加值。与预期相反,物种分布模型(SDM)之间的差异与其局部丰度或系统发育/功能相似性无关。此外,发现物种的光谱特征部分具有地点特异性。我们讨论了基于AIS的SDM目前的局限性,强调了AIS数据的尺度和信息含量问题。