Suppr超能文献

多个皮质系统的同步实时监测

Simultaneous real-time monitoring of multiple cortical systems.

作者信息

Gupta Disha, Jeremy Hill N, Brunner Peter, Gunduz Aysegul, Ritaccio Anthony L, Schalk Gerwin

机构信息

Wadsworth Center, New York State Department of Health, Albany, NY, USA. Department of Neurology, Albany Medical College, Albany, NY, USA. Early Brain Injury Recovery Program, Burke-Cornell Medical Research Institute, White Plains, NY, USA.

出版信息

J Neural Eng. 2014 Oct;11(5):056001. doi: 10.1088/1741-2560/11/5/056001. Epub 2014 Jul 31.

Abstract

OBJECTIVE

Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance.

APPROACH

We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time.

SIGNIFICANCE

This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic.

摘要

目的

对大脑进行实时监测对于性能监测、交流、训练或康复具有潜在价值。在自然情况下,大脑执行各种感觉、运动或认知功能的复杂组合。因此,如果(a)能够同时从多个脑系统解码信息,并且(b)每个脑系统的这种解码对其他(不相关)脑系统活动的变化具有鲁棒性,那么实时脑监测将最有价值。先前的研究表明,回顾性地和/或孤立地从不同脑系统解码一些信息是可能的。在我们的研究中,我们着手确定是否有可能实时同时从不同脑系统解码关于用户的重要信息,并评估不同脑系统中并发活动对解码性能的影响。

方法

我们使用记录自人类的皮层脑电图信号来研究这些问题。我们首先记录在训练数据很少的情况下生成稳定解码模型的程序,然后报告它们在离线和来自12名受试者(6名用于离线参数优化,6名用于在线实验)的实时解码中的应用。受试者分别然后同时参与涉及运动意图、运动执行和听觉功能的任务。主要结果:我们的实时结果表明,我们的系统能够在单次试验中分别以80.4%和86.8%的准确率识别意图期和运动期(随机预期为50%)。同时,对听觉刺激功率包络的解码导致实际功率包络和解码功率包络之间的平均相关系数为0.37。这些解码器是分别训练并实时同时执行的。

意义

本研究首次证明了同时解码多个独立脑系统的功能活动是可能的。我们对单变量和多变量解码策略的比较以及对其解码参数影响的分析,为该主题的未来研究提供了基准和指导方针。

相似文献

1
Simultaneous real-time monitoring of multiple cortical systems.
J Neural Eng. 2014 Oct;11(5):056001. doi: 10.1088/1741-2560/11/5/056001. Epub 2014 Jul 31.
3
Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):867-76. doi: 10.1109/TNSRE.2014.2375879. Epub 2014 Dec 2.
4
Real-time decoding of question-and-answer speech dialogue using human cortical activity.
Nat Commun. 2019 Jul 30;10(1):3096. doi: 10.1038/s41467-019-10994-4.
5
Efficient decoding with steady-state Kalman filter in neural interface systems.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):25-34. doi: 10.1109/TNSRE.2010.2092443. Epub 2010 Nov 15.
6
Decoding hand trajectories from micro-electrocorticography in human patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4091-4. doi: 10.1109/EMBC.2012.6346866.
7
Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
J Neural Eng. 2013 Jun;10(3):036015. doi: 10.1088/1741-2560/10/3/036015. Epub 2013 Apr 23.
9
Sparse linear regression with elastic net regularization for brain-computer interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4275-8. doi: 10.1109/EMBC.2012.6346911.
10

引用本文的文献

1
Music can be reconstructed from human auditory cortex activity using nonlinear decoding models.
PLoS Biol. 2023 Aug 15;21(8):e3002176. doi: 10.1371/journal.pbio.3002176. eCollection 2023 Aug.

本文引用的文献

1
An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
J Neural Eng. 2013 Apr;10(2):026010. doi: 10.1088/1741-2560/10/2/026010. Epub 2013 Feb 21.
2
The tracking of speech envelope in the human cortex.
PLoS One. 2013;8(1):e53398. doi: 10.1371/journal.pone.0053398. Epub 2013 Jan 10.
3
An electrocorticographic brain interface in an individual with tetraplegia.
PLoS One. 2013;8(2):e55344. doi: 10.1371/journal.pone.0055344. Epub 2013 Feb 6.
4
Decoding onset and direction of movements using Electrocorticographic (ECoG) signals in humans.
Front Neuroeng. 2012 Aug 8;5:15. doi: 10.3389/fneng.2012.00015. eCollection 2012.
6
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
7
Dynamics of electrocorticographic (ECoG) activity in human temporal and frontal cortical areas during music listening.
Neuroimage. 2012 Jul 16;61(4):841-8. doi: 10.1016/j.neuroimage.2012.04.022. Epub 2012 Apr 14.
8
Decoding Finger Movements from ECoG Signals Using Switching Linear Models.
Front Neurosci. 2012 Mar 6;6:29. doi: 10.3389/fnins.2012.00029. eCollection 2012.
9
Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans.
Neuroimage. 2012 May 1;60(4):2285-93. doi: 10.1016/j.neuroimage.2012.02.017. Epub 2012 Feb 16.
10
A novel flex-rigid and soft-release ECoG array.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2973-6. doi: 10.1109/IEMBS.2011.6090816.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验