Zhang Xufeng, Liu Tianyu, Flatté Michael E, Tang Hong X
Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA.
Optical Science and Technology Center and Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA.
Phys Rev Lett. 2014 Jul 18;113(3):037202. doi: 10.1103/PhysRevLett.113.037202. Epub 2014 Jul 16.
We experimentally demonstrate that the spin-orbit interaction can be utilized for direct electric-field tuning of the propagation of spin waves in a single-crystal yttrium iron garnet magnonic waveguide. Magnetoelectric coupling not due to the spin-orbit interaction and, hence, an order of magnitude weaker leads to electric-field modification of the spin-wave velocity for waveguide geometries where the spin-orbit interaction will not contribute. A theory of the phase shift, validated by the experiment data, shows that, in the exchange spin wave regime, this electric tuning can have high efficiency. Our findings point to an important avenue for manipulating spin waves and developing electrically tunable magnonic devices.
我们通过实验证明,自旋轨道相互作用可用于在单晶钇铁石榴石磁子波导中直接电场调谐自旋波的传播。非自旋轨道相互作用导致的磁电耦合,其强度要弱一个数量级,对于自旋轨道相互作用不起作用的波导几何结构,会导致自旋波速度的电场调制。经实验数据验证的相移理论表明,在交换自旋波 regime 中,这种电调谐可具有高效率。我们的发现为操纵自旋波和开发电可调磁子器件指明了一条重要途径。