Suppr超能文献

双能计算机断层扫描组织参数提取方法的理论比较

A theoretical comparison of tissue parameter extraction methods for dual energy computed tomography.

作者信息

Tremblay Jean-Étienne, Bedwani Stéphane, Bouchard Hugo

机构信息

Département de Radio-Oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec H2L 4M1, Canada.

Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom.

出版信息

Med Phys. 2014 Aug;41(8):081905. doi: 10.1118/1.4886055.

Abstract

PURPOSE

To evaluate the reliability of common sinogram-based DECT reconstruction methods for radiotherapy tissue characterization and to evaluate the advantage of combining them with a stoichiometric calibration.

METHODS

The sinogram-based DECT method defined byAlvarez and Macovski ["Energy-selective reconstructions in x-ray computerized tomography," Phys. Med. Biol. 21, 733-744 (1976)] is adapted to the XCOM photon cross sections database and also generalized to a two-material decomposition method. A theoretical framework is developed using a test phantom containing human tissue compositions for comparing the sinogram-based methods and the calibration-based method, being defined as the application of the stoichiometric calibration technique of Bourque et al. ["A stoichiometric calibration method for dual energy computed tomography," Phys. Med. Biol. 59, 2059-2088 (2014)] on monoenergetic images being generated with a sinogram-based method. Applying a bias correction to the sinogram-based method, its performance in extracting human tissue parameters in the presence of noise as well as by altering the photon energy spectrum is compared to the calibration-based method.

RESULTS

In the absence of noise and without spectrum alteration, the calibration-based method is found to have no benefit on the sinogram-based method. However, the calibration-based method is shown to be potentially more reliable than bias-corrected sinogram-based methods in situations comparable to the clinical environment, where noise is present and the photon energy spectra can differ from what is used during image reconstruction. In determining electron density, the performance of all methods is comparable in the presence of noise only. Moreover, combined with heavy spectrum alteration, the mean errors on electron density are found higher in sinogram-based methods in comparison with the calibration-based method, with 1.2% versus 0.2%. In the presence of significant noise, bias-corrected sinogram-based methods yield mean errors on effective atomic number of about 2.5%, as compared to 0.5% for the calibration-based method. When combined with heavy spectrum alteration, bias-corrected sinogram-based methods can lead to error of up to 4% on the effective atomic number versus 1.8% for the calibration-based method.

CONCLUSIONS

While sinogram-based methods have the advantage of eliminating beam hardening effects, results of this study suggest improvements in the accuracy and reliability of extracting tissue parameters by applying the DECT stoichiometric calibration of Bourqueet al. to monoenergetic images being generated with such DECT reconstruction methods.

摘要

目的

评估基于正弦图的双能CT(DECT)重建方法用于放射治疗组织特征分析的可靠性,并评估将其与化学计量校准相结合的优势。

方法

将由阿尔瓦雷斯和马科夫斯基定义的基于正弦图的DECT方法[《X射线计算机断层扫描中的能量选择性重建》,《物理医学与生物学》21卷,733 - 744页(1976年)]应用于XCOM光子截面数据库,并推广为一种双物质分解方法。使用包含人体组织成分的测试体模建立一个理论框架,用于比较基于正弦图的方法和基于校准的方法,基于校准的方法定义为将布尔克等人的化学计量校准技术[《双能计算机断层扫描的化学计量校准方法》,《物理医学与生物学》59卷,2059 - 2088页(2014年)]应用于通过基于正弦图的方法生成的单能图像。对基于正弦图的方法进行偏差校正,将其在存在噪声以及改变光子能谱情况下提取人体组织参数的性能与基于校准的方法进行比较。

结果

在不存在噪声且未改变能谱的情况下,发现基于校准的方法对基于正弦图的方法没有优势。然而,在与临床环境相当的情况下,即存在噪声且光子能谱可能与图像重建时所用的不同时,基于校准的方法显示出可能比经过偏差校正的基于正弦图的方法更可靠。在仅存在噪声的情况下,所有方法在确定电子密度方面的性能相当。此外,与能谱的大幅改变相结合时,发现基于正弦图的方法在电子密度上的平均误差比基于校准的方法更高,分别为1.2%和0.2%。在存在显著噪声的情况下,经过偏差校正的基于正弦图的方法在有效原子序数上产生的平均误差约为2.5%,而基于校准的方法为0.5%。当与能谱的大幅改变相结合时,经过偏差校正的基于正弦图的方法在有效原子序数上可能导致高达4%的误差,而基于校准的方法为1.8%。

结论

虽然基于正弦图的方法具有消除束硬化效应的优势,但本研究结果表明,通过将布尔克等人的DECT化学计量校准应用于用此类DECT重建方法生成的单能图像,可以提高提取组织参数的准确性和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验