Suppr超能文献

分割对小梁骨显微CT图像的影响。

Influence of segmentation on micro-CT images of trabecular bone.

作者信息

Tassani S, Korfiatis V, Matsopoulos G K

机构信息

Institute of Communication and Computer System, National Technical University of Athens, Zografou, Athens, Greece.

出版信息

J Microsc. 2014 Nov;256(2):75-81. doi: 10.1111/jmi.12159. Epub 2014 Aug 4.

Abstract

Segmentation of biomedical images is of great importance in various studies aiming to both the identification of regions of interests within the image and the performance of quantified measurements. Nevertheless, the segmentation of the biomedical images represents a wide range of medical cases and there is not a unique technique applicable to all kinds of medical images. In this study, three popular techniques for segmenting micro-CT images of bone microstructures are evaluated. Fixed threshold, Otsu's algorithm and a modified version of the Chan-Vese segmentation technique have been applied on micro-CT images and have been compared to higher resolution golden standard, that is histological images. The modification of the Chan-Vese technique is based on the novel implementation of a new initialization process called the Branch Point Initialization. Stereological measurements were performed on all the segmented images and statistically compared to the golden standard. Fixed threshold and the modified Chan-Vese technique have shown comparable results, with a maximum significant error of about 10%. However, Chan-Vese showed an easier, faster and more reliable segmentation procedure for optimal settings identification. The Otsu's method showed a maximum error larger than 20%. Given the limits and advantages of the known segmentation techniques, the proposed modified Chan-Vese active contour technique shows high potential for use in the segmentation of micro-CT images as well as in other high-resolution X-ray images. This potential is augmented by the recent introduction of high-resolution clinical technologies for which standard techniques have already shown to be insufficient.

摘要

生物医学图像分割在各类旨在识别图像内感兴趣区域以及进行量化测量的研究中具有重要意义。然而,生物医学图像分割涵盖了广泛的医学病例,且不存在适用于所有类型医学图像的单一技术。在本研究中,对三种用于分割骨微结构微观计算机断层扫描(micro-CT)图像的常用技术进行了评估。固定阈值、大津算法以及Chan-Vese分割技术的改进版本已应用于micro-CT图像,并与更高分辨率的金标准(即组织学图像)进行了比较。Chan-Vese技术的改进基于一种名为分支点初始化的新初始化过程的新颖实现。对所有分割图像进行了体视学测量,并与金标准进行了统计学比较。固定阈值和改进的Chan-Vese技术显示出可比的结果,最大显著误差约为10%。然而,对于最佳设置识别,Chan-Vese显示出更简便、快速且更可靠的分割过程。大津方法显示出的最大误差大于20%。鉴于已知分割技术的局限性和优势,所提出的改进Chan-Vese活动轮廓技术在micro-CT图像以及其他高分辨率X射线图像的分割中显示出很高的应用潜力。近期引入的高分辨率临床技术已表明标准技术不足,这进一步增强了这种潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验