Suppr超能文献

C 端钙敏感无序基序调节肌集钙蛋白的亚型特异性聚合特性。

The C-terminal calcium-sensitive disordered motifs regulate isoform-specific polymerization characteristics of calsequestrin.

作者信息

Bal Naresh C, Jena Nivedita, Chakravarty Harapriya, Kumar Amit, Chi Mei, Balaraju Tuniki, Rawale Sharad V, Rawale Jayashree S, Sharon Ashoke, Periasamy Muthu

机构信息

Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210.

出版信息

Biopolymers. 2015 Jan;103(1):15-22. doi: 10.1002/bip.22534.

Abstract

Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C-terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn-motif and DEXn-motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C-terminal motifs possess Ca(2+)-sensitivity and affect protein function. Sequence analysis shows that both the Dn- and DEXn-motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca(2+)-mediated folding suggesting that these disordered motifs are Ca(2+)-sensitivity. We generated chimeric proteins by swapping the C-terminal portions between CASQ1 and CASQ2. Our studies show that the C-terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C-terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca(2+)-sensitivity IDRs located at the back-to-back dimer interface influence isoform-specific Ca(2+)-dependent polymerization properties of CASQ.

摘要

在所有脊椎动物中,钙结合蛋白(CASQ)以两种不同的异构体CASQ1和CASQ2形式存在。尽管这两种异构体表现出独特的功能特性,但其结构基础尚未完全明确。有趣的是,这两种异构体的C末端区域在长度和氨基酸组成上均存在显著差异;分别在CASQ1和CASQ2中形成Dn基序和DEXn基序。在此,我们研究了这些独特的C末端基序是否具有Ca(2+)敏感性并影响蛋白质功能。序列分析表明,Dn基序和DEXn基序均为该蛋白质的内在无序区域(IDR),这一特征从鱼类到人类都保守存在。使用纯化的合成肽,我们表明这些基序经历了独特的Ca(2+)介导的折叠,表明这些无序基序具有Ca(2+)敏感性。我们通过交换CASQ1和CASQ2之间的C末端部分生成了嵌合蛋白。我们的研究表明,C末端部分在蛋白质折叠中不起重要作用。本研究的一个有趣发现是,C末端部分的交换完全逆转了聚合动力学。总体而言,这些数据表明,位于背对背二聚体界面的这些Ca(2+)敏感IDR影响了CASQ异构体特异性的Ca(2+)依赖性聚合特性。

相似文献

2
Identification of calcium binding sites on calsequestrin 1 and their implications for polymerization.
Mol Biosyst. 2013 Jul;9(7):1949-57. doi: 10.1039/c3mb25588c. Epub 2013 Apr 29.
3
Glycosylation of skeletal calsequestrin: implications for its function.
J Biol Chem. 2012 Jan 27;287(5):3042-50. doi: 10.1074/jbc.M111.326363. Epub 2011 Dec 14.
4
Phosphorylation of human calsequestrin: implications for calcium regulation.
Mol Cell Biochem. 2011 Jul;353(1-2):195-204. doi: 10.1007/s11010-011-0787-4. Epub 2011 Mar 17.
6
Polymerization of calsequestrin. Implications for Ca2+ regulation.
J Biol Chem. 2003 May 2;278(18):16176-82. doi: 10.1074/jbc.M300120200. Epub 2003 Feb 19.
8
Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants.
Biochem J. 2011 Apr 15;435(2):391-9. doi: 10.1042/BJ20101771.
10
Epitopes, immunoglobulin classes and immunoglobulin G subclasses of calsequestrin antibodies in patients with thyroid eye disease.
Autoimmunity. 2010 Dec;43(8):698-703. doi: 10.3109/08916931003774954. Epub 2010 Jul 29.

引用本文的文献

2
Deep-time gene expression shift reveals an ancient change in avian muscle phenotypes.
PLoS Genet. 2025 Apr 11;21(4):e1011663. doi: 10.1371/journal.pgen.1011663. eCollection 2025 Apr.
4
Calsequestrin: a well-known but curious protein in skeletal muscle.
Exp Mol Med. 2020 Dec;52(12):1908-1925. doi: 10.1038/s12276-020-00535-1. Epub 2020 Dec 7.
6
Calsequestrin, a key protein in striated muscle health and disease.
J Muscle Res Cell Motil. 2021 Jun;42(2):267-279. doi: 10.1007/s10974-020-09583-6. Epub 2020 Jun 2.
7
First Insight on Small Molecules as Cardiac Calsequestrin Stabilizers.
ACS Omega. 2019 Jul 2;4(7):11508-11514. doi: 10.1021/acsomega.9b01113. eCollection 2019 Jul 31.
8
Organellar Calcium Handling in the Cellular Reticular Network.
Cold Spring Harb Perspect Biol. 2019 Dec 2;11(12):a038265. doi: 10.1101/cshperspect.a038265.
10
Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.
J Muscle Res Cell Motil. 2016 Apr;37(1-2):27-39. doi: 10.1007/s10974-015-9432-2. Epub 2015 Nov 20.

本文引用的文献

1
Identification of calcium binding sites on calsequestrin 1 and their implications for polymerization.
Mol Biosyst. 2013 Jul;9(7):1949-57. doi: 10.1039/c3mb25588c. Epub 2013 Apr 29.
3
Functional interaction between calsequestrin and ryanodine receptor in the heart.
Cell Mol Life Sci. 2013 Aug;70(16):2935-45. doi: 10.1007/s00018-012-1199-7. Epub 2012 Oct 30.
4
High-capacity Ca2+ binding of human skeletal calsequestrin.
J Biol Chem. 2012 Mar 30;287(14):11592-601. doi: 10.1074/jbc.M111.335075. Epub 2012 Feb 15.
5
Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants.
Biochem J. 2011 Apr 15;435(2):391-9. doi: 10.1042/BJ20101771.
6
Duplication of calsequestrin genes in teleosts: molecular characterization in the Senegalese sole (Solea senegalensis).
Comp Biochem Physiol B Biochem Mol Biol. 2011 Apr;158(4):304-14. doi: 10.1016/j.cbpb.2011.01.002. Epub 2011 Jan 21.
7
Quantification of calsequestrin 2 (CSQ2) in sheep cardiac muscle and Ca2+-binding protein changes in CSQ2 knockout mice.
Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H595-604. doi: 10.1152/ajpheart.00902.2010. Epub 2010 Dec 3.
8
Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle.
J Gen Physiol. 2010 Sep;136(3):325-38. doi: 10.1085/jgp.201010454. Epub 2010 Aug 16.
10
PONDR-FIT: a meta-predictor of intrinsically disordered amino acids.
Biochim Biophys Acta. 2010 Apr;1804(4):996-1010. doi: 10.1016/j.bbapap.2010.01.011. Epub 2010 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验