Bal Naresh C, Jena Nivedita, Chakravarty Harapriya, Kumar Amit, Chi Mei, Balaraju Tuniki, Rawale Sharad V, Rawale Jayashree S, Sharon Ashoke, Periasamy Muthu
Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210.
Biopolymers. 2015 Jan;103(1):15-22. doi: 10.1002/bip.22534.
Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C-terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn-motif and DEXn-motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C-terminal motifs possess Ca(2+)-sensitivity and affect protein function. Sequence analysis shows that both the Dn- and DEXn-motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca(2+)-mediated folding suggesting that these disordered motifs are Ca(2+)-sensitivity. We generated chimeric proteins by swapping the C-terminal portions between CASQ1 and CASQ2. Our studies show that the C-terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C-terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca(2+)-sensitivity IDRs located at the back-to-back dimer interface influence isoform-specific Ca(2+)-dependent polymerization properties of CASQ.
在所有脊椎动物中,钙结合蛋白(CASQ)以两种不同的异构体CASQ1和CASQ2形式存在。尽管这两种异构体表现出独特的功能特性,但其结构基础尚未完全明确。有趣的是,这两种异构体的C末端区域在长度和氨基酸组成上均存在显著差异;分别在CASQ1和CASQ2中形成Dn基序和DEXn基序。在此,我们研究了这些独特的C末端基序是否具有Ca(2+)敏感性并影响蛋白质功能。序列分析表明,Dn基序和DEXn基序均为该蛋白质的内在无序区域(IDR),这一特征从鱼类到人类都保守存在。使用纯化的合成肽,我们表明这些基序经历了独特的Ca(2+)介导的折叠,表明这些无序基序具有Ca(2+)敏感性。我们通过交换CASQ1和CASQ2之间的C末端部分生成了嵌合蛋白。我们的研究表明,C末端部分在蛋白质折叠中不起重要作用。本研究的一个有趣发现是,C末端部分的交换完全逆转了聚合动力学。总体而言,这些数据表明,位于背对背二聚体界面的这些Ca(2+)敏感IDR影响了CASQ异构体特异性的Ca(2+)依赖性聚合特性。