Pagano Rodrigo S, López Medus Máximo, Gómez Gabriela E, Couto Paula M, Labanda María S, Landolfo Lucas, D'Alessio Cecilia, Caramelo Julio J
Structural Cell Biology Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina.
Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
Biophys J. 2014 Aug 5;107(3):711-720. doi: 10.1016/j.bpj.2014.06.029.
Protein aggregation is linked to more than 30 human pathologies, including Alzheimer's and Parkinson's diseases. Since small oligomers that form at the beginning of the fibrillation process probably are the most toxic elements, therapeutic strategies involving fibril fragmentation could be detrimental. An alternative approach, named kinetic inhibition, aims to prevent fibril formation by using small ligands that stabilize the parent protein. The factors that govern fibrillation lag times during kinetic inhibition are largely unknown, notwithstanding their importance for designing effective long-term therapies. Inhibitor-bound species are not likely to be incorporated into the core of mature fibrils, although their presence could alter the kinetics of the fibrillation process. For instance, inhibitor-bound species may act as capping elements that impair the nucleation process and/or fibril growth. Here, we address this issue by studying the effect of two natural inhibitors on the fibrillation behavior of lysozyme at neutral pH. We analyzed a set of 79 fibrillation curves obtained in lysozyme alone and a set of 37 obtained in the presence of inhibitors. We calculated the concentrations of the relevant species at the beginning of the curves using the inhibitor-binding constants measured under the same experimental conditions. We found that inhibitor-bound protein species do not affect fibrillation onset times, which are mainly determined by the concentration of unbound protein species present in equilibrium. In this system, knowledge of the fibrillation kinetics and inhibitor affinities suffices to predict the effect of kinetic inhibitors on fibrillation lag times. In addition, we developed a new methodology to better estimate fibrillation lag times from experimental curves.
蛋白质聚集与30多种人类疾病相关,包括阿尔茨海默病和帕金森病。由于在纤维化过程开始时形成的小寡聚体可能是最具毒性的成分,涉及原纤维断裂的治疗策略可能有害。一种名为动力学抑制的替代方法旨在通过使用稳定母体蛋白质的小配体来防止原纤维形成。尽管动力学抑制过程中控制纤维化滞后时间的因素对设计有效的长期治疗很重要,但在很大程度上仍不清楚。与抑制剂结合的物种不太可能被纳入成熟原纤维的核心,尽管它们的存在可能会改变纤维化过程的动力学。例如,与抑制剂结合的物种可能作为封端元件,损害成核过程和/或原纤维生长。在这里,我们通过研究两种天然抑制剂对中性pH下溶菌酶纤维化行为的影响来解决这个问题。我们分析了一组在单独溶菌酶中获得的79条纤维化曲线和一组在存在抑制剂的情况下获得的37条曲线。我们使用在相同实验条件下测量的抑制剂结合常数计算曲线开始时相关物种的浓度。我们发现与抑制剂结合的蛋白质物种不会影响纤维化起始时间,纤维化起始时间主要由平衡状态下未结合蛋白质物种的浓度决定。在这个系统中,了解纤维化动力学和抑制剂亲和力足以预测动力学抑制剂对纤维化滞后时间的影响。此外,我们开发了一种新方法,以更好地从实验曲线估计纤维化滞后时间。