Kamanda Ngugi David, Blom Jochen, Alam Intikhab, Rashid Mamoon, Ba-Alawi Wail, Zhang Guishan, Hikmawan Tyas, Guan Yue, Antunes Andre, Siam Rania, El Dorry Hamza, Bajic Vladimir, Stingl Ulrich
Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany.
ISME J. 2015 Feb;9(2):396-411. doi: 10.1038/ismej.2014.137. Epub 2014 Aug 8.
The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.
红海海底有超过25个深度高盐缺氧盆地,这些盆地在地球化学上各不相同,其特征是存在极端物理化学条件的垂直梯度。由于密度的强烈变化,颗粒和微生物残骸被困在卤水 - 海水界面(BSI)中,导致溶解有机碳增加,向卤水方向溶解氧减少,并且BSI中的微生物活动增强。这些特征,再加上全球海洋中氨氧化古菌(AOA)在深海中的普遍存在,使得BSI成为研究这些海洋氮循环中重要参与者的渗透适应性和生态学的合适环境。使用基于系统基因组学的方法,我们表明五个不同BSI栖息地(盐度高达18.2%)的本地古菌群落主要由单一的、高度丰富的类硝化侏儒菌系统型组成,该系统型在系统发育上与深海中层奇古菌不同;不存在氨氧化细菌。从一个这样的BSI栖息地的多个单细胞扩增基因组(SAG)共同组装而成的这个新型类硝化侏儒菌亚群(RSA3)的复合基因组进一步表明,它与已测序的硝化侏儒菌物种共享约54%的预测基因组清单。RSA3还携带了几个可变的基因集,进一步阐明了该属的系统发育多样性和代谢可塑性。具体而言,它编码一种假定的脯氨酸 - 谷氨酸“开关”,可能在渗透耐受性方面发挥作用,并对碳和能量流动产生间接影响。针对复合RSA3基因组、海生硝化侏儒菌和中层奇古菌SAG的宏基因组片段招募分析也重申了BSI基因型与其他AOA之间的差异。