Mehrvarzi C O, Paul M R
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012905. doi: 10.1103/PhysRevE.90.012905. Epub 2014 Jul 21.
We investigate numerically the dynamics of a propagating front in the presence of a spatiotemporally chaotic flow field. The flow field is the three-dimensional time-dependent state of spiral defect chaos generated by Rayleigh-Bénard convection in a spatially extended domain. Using large-scale parallel numerical simulations, we simultaneously solve the Boussinesq equations and a reaction-advection-diffusion equation with a Fischer-Kolmogorov-Petrovskii-Piskunov reaction for the transport of the scalar species in a large-aspect-ratio cylindrical domain for experimentally accessible conditions. We explore the front dynamics and geometry in the low-Damköhler-number regime, where the effect of the flow field is significant. Our results show that the chaotic flow field enhances the front propagation when compared with a purely cellular flow field. We quantify this enhancement by computing the spreading rate of the reaction products for a range of parameters. We use our results to quantify the complexity of the three-dimensional front geometry for a range of chaotic flow conditions.
我们通过数值方法研究了在存在时空混沌流场的情况下传播前沿的动力学。该流场是在空间扩展域中由瑞利 - 贝纳德对流产生的螺旋缺陷混沌的三维时间相关状态。使用大规模并行数值模拟,我们在实验可及条件下,在大纵横比圆柱域中同时求解了描述标量物质输运的布辛涅斯克方程和带有菲舍尔 - 科尔莫戈罗夫 - 彼得罗夫斯基 - 皮斯库诺夫反应的反应 - 平流 - 扩散方程。我们探索了低达姆科勒数 regime 下的前沿动力学和几何形状,其中流场的影响显著。我们的结果表明,与纯细胞流场相比,混沌流场增强了前沿传播。我们通过计算一系列参数下反应产物的扩散速率来量化这种增强。我们利用结果量化了一系列混沌流条件下三维前沿几何形状的复杂性。