Suppr超能文献

与IRF8(K108E)突变相关的人类树突状细胞免疫缺陷的功能特征

Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation.

作者信息

Salem Sandra, Langlais David, Lefebvre François, Bourque Guillaume, Bigley Venetia, Haniffa Muzz, Casanova Jean-Laurent, Burk David, Berghuis Albert, Butler Karina M, Leahy Timothy Ronan, Hambleton Sophie, Gros Philippe

机构信息

Department of Biochemistry McGill University, Montreal, QC, Canada

出版信息

Blood. 2014 Sep 18;124(12):1894-904. doi: 10.1182/blood-2014-04-570879.

Abstract

We have previously reported on a unique patient in whom homozygosity for a mutation at IRF8 (IRF8(K108E)) causes a severe immunodeficiency. Laboratory evaluation revealed a highly unusual myeloid compartment, remarkable for the complete absence of CD141 and CD161 monocytes, absence of CD11c1 conventional dendritic cells (DCs) and CD11c1/CD1231 plasmacytoid DCs, and striking granulocytic hyperplasia. The patient initially presented with severe disseminated mycobacterial and mucocutaneous fungal infections and was ultimately cured by cord blood transplant. Sequencing RNA from the IRF8(K108E) patient's primary blood cells prior to transplant shows not only depletion of IRF8-bound and IRF8-regulated transcriptional targets, in keeping with the distorted composition of the myeloid compartment, but also a paucity of transcripts associated with activated CD41 and CD81 T lymphocytes. This suggests that T cells reared in the absence of a functional antigen-presenting compartment in IRF8(K108E) are anergic. Biochemical characterization of the IRF8(K108E) mutant in vitro shows that loss of the positively charged side chain at K108 causes loss of nuclear localization and loss of transcriptional activity, which is concomitant with decreased protein stability, increased ubiquitination, increased small ubiquitin-like modification, and enhanced proteasomal degradation. These findings provide functional insight into the molecular basis of immunodeficiency associated with loss of IRF8.

摘要

我们之前报道过一位独特的患者,其IRF8基因发生突变(IRF8(K108E))呈纯合状态,导致严重免疫缺陷。实验室评估显示其髓系细胞区非常异常,显著特点是完全缺乏CD141和CD161单核细胞,缺乏CD11c1传统树突状细胞(DCs)和CD11c1/CD1231浆细胞样DCs,且粒细胞增生明显。该患者最初表现为严重的播散性分枝杆菌和黏膜皮肤真菌感染,最终通过脐血移植治愈。对移植前IRF8(K108E)患者原代血细胞的RNA测序显示,不仅与IRF8结合及受IRF8调控的转录靶点减少,这与髓系细胞区组成的扭曲相符,而且与活化的CD41和CD81 T淋巴细胞相关的转录本也很少。这表明在IRF8(K108E)中缺乏功能性抗原呈递细胞区的情况下培养的T细胞无反应性。体外对IRF8(K108E)突变体的生化特性分析表明,K108处带正电荷侧链的缺失导致核定位丧失和转录活性丧失,这与蛋白质稳定性降低、泛素化增加、小泛素样修饰增加以及蛋白酶体降解增强相伴。这些发现为与IRF8缺失相关的免疫缺陷的分子基础提供了功能方面的见解。

相似文献

2
IRF8 mutations and human dendritic-cell immunodeficiency.
N Engl J Med. 2011 Jul 14;365(2):127-38. doi: 10.1056/NEJMoa1100066. Epub 2011 Apr 27.
4
Genetic determinants of susceptibility to Mycobacterial infections: IRF8, a new kid on the block.
Adv Exp Med Biol. 2013;783:45-80. doi: 10.1007/978-1-4614-6111-1_3.
5
Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases.
Hum Genet. 2020 Jun;139(6-7):707-721. doi: 10.1007/s00439-020-02154-2. Epub 2020 Mar 30.
7
Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells.
Stem Cells. 2017 Apr;35(4):898-908. doi: 10.1002/stem.2565. Epub 2017 Feb 1.
8
Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans.
Immunity. 2020 Aug 18;53(2):353-370.e8. doi: 10.1016/j.immuni.2020.07.003. Epub 2020 Jul 30.
9
Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis.
PLoS Genet. 2011 Jun;7(6):e1002097. doi: 10.1371/journal.pgen.1002097. Epub 2011 Jun 23.
10
A role for IRF8 in B cell anergy.
J Immunol. 2013 Dec 15;191(12):6222-30. doi: 10.4049/jimmunol.1301169. Epub 2013 Nov 11.

引用本文的文献

1
[A case of hepatitis-associated aplastic anemia complicated by hemophagocytic lymphohistiocytosis and literature review].
Zhongguo Dang Dai Er Ke Za Zhi. 2025 Apr 15;27(4):465-471. doi: 10.7499/j.issn.1008-8830.2409118.
2
Cross-trait GWAS in COVID-19 and systemic sclerosis reveals novel genes implicated in fibrotic and inflammation pathways.
Rheumatology (Oxford). 2025 Jun 1;64(6):4022-4031. doi: 10.1093/rheumatology/keaf028.
4
The Myc-associated zinc finger protein epigenetically controls expression of interferon-γ-stimulated genes by recruiting STAT1 to chromatin.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320938121. doi: 10.1073/pnas.2320938121. Epub 2024 Apr 18.
5
Mechanism of transforming growth factor-1 induce renal fibrosis based on transcriptome sequencing analysis.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023 Sep 28;52(5):594-604. doi: 10.3724/zdxbyxb-2022-0672.
7
Dendritic cells in inborn errors of immunity.
Front Immunol. 2023 Jan 23;14:1080129. doi: 10.3389/fimmu.2023.1080129. eCollection 2023.
8
IRF8: Mechanism of Action and Health Implications.
Cells. 2022 Aug 24;11(17):2630. doi: 10.3390/cells11172630.
10
Regulation of B Lymphocyte Development by Histone H2A Deubiquitinase BAP1.
Front Immunol. 2021 Apr 12;12:626418. doi: 10.3389/fimmu.2021.626418. eCollection 2021.

本文引用的文献

1
Genetics of rheumatoid arthritis contributes to biology and drug discovery.
Nature. 2014 Feb 20;506(7488):376-81. doi: 10.1038/nature12873. Epub 2013 Dec 25.
2
GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity.
Blood. 2014 Feb 6;123(6):809-21. doi: 10.1182/blood-2013-07-515528. Epub 2013 Nov 13.
3
Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria.
PLoS Pathog. 2013;9(7):e1003491. doi: 10.1371/journal.ppat.1003491. Epub 2013 Jul 11.
5
Genetic variation associated with circulating monocyte count in the eMERGE Network.
Hum Mol Genet. 2013 May 15;22(10):2119-27. doi: 10.1093/hmg/ddt010. Epub 2013 Jan 12.
7
Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.
Science. 2012 Sep 28;337(6102):1684-8. doi: 10.1126/science.1224026. Epub 2012 Aug 2.
8
RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7. doi: 10.1093/nar/gks540. Epub 2012 Jun 8.
10
Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus.
PLoS Genet. 2011 Oct;7(10):e1002341. doi: 10.1371/journal.pgen.1002341. Epub 2011 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验