Suppr超能文献

植物叶片形状的无地标统计分析。

Landmark-free statistical analysis of the shape of plant leaves.

作者信息

Laga Hamid, Kurtek Sebastian, Srivastava Anuj, Miklavcic Stanley J

机构信息

Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes SA5095, Australia; Australian Centre for Plant Functional Genomics, Pty Ltd, Australia.

Department of Statistics, The Ohio State University, United States.

出版信息

J Theor Biol. 2014 Dec 21;363:41-52. doi: 10.1016/j.jtbi.2014.07.036. Epub 2014 Aug 11.

Abstract

The shapes of plant leaves are important features to biologists, as they can help in distinguishing plant species, measuring their health, analyzing their growth patterns, and understanding relations between various species. Most of the methods that have been developed in the past focus on comparing the shape of individual leaves using either descriptors or finite sets of landmarks. However, descriptor-based representations are not invertible and thus it is often hard to map descriptor variability into shape variability. On the other hand, landmark-based techniques require automatic detection and registration of the landmarks, which is very challenging in the case of plant leaves that exhibit high variability within and across species. In this paper, we propose a statistical model based on the Squared Root Velocity Function (SRVF) representation and the Riemannian elastic metric of Srivastava et al. (2011) to model the observed continuous variability in the shape of plant leaves. We treat plant species as random variables on a non-linear shape manifold and thus statistical summaries, such as means and covariances, can be computed. One can then study the principal modes of variations and characterize the observed shapes using probability density models, such as Gaussians or Mixture of Gaussians. We demonstrate the usage of such statistical model for (1) efficient classification of individual leaves, (2) the exploration of the space of plant leaf shapes, which is important in the study of population-specific variations, and (3) comparing entire plant species, which is fundamental to the study of evolutionary relationships in plants. Our approach does not require descriptors or landmarks but automatically solves for the optimal registration that aligns a pair of shapes. We evaluate the performance of the proposed framework on publicly available benchmarks such as the Flavia, the Swedish, and the ImageCLEF2011 plant leaf datasets.

摘要

植物叶片的形状是生物学家关注的重要特征,因为它们有助于区分植物物种、衡量植物健康状况、分析植物生长模式以及理解不同物种之间的关系。过去开发的大多数方法都集中在使用描述符或有限的地标集来比较单个叶片的形状。然而,基于描述符的表示是不可逆的,因此通常很难将描述符的变异性映射到形状变异性上。另一方面,基于地标的技术需要自动检测和配准地标,对于在物种内部和物种之间表现出高度变异性的植物叶片来说,这极具挑战性。在本文中,我们提出了一种基于平方根速度函数(SRVF)表示和Srivastava等人(2011年)的黎曼弹性度量的统计模型,以对观察到的植物叶片形状的连续变异性进行建模。我们将植物物种视为非线性形状流形上的随机变量,因此可以计算诸如均值和协方差等统计摘要。然后,可以研究变异的主要模式,并使用概率密度模型(如高斯模型或高斯混合模型)来表征观察到的形状。我们展示了这种统计模型在以下方面的应用:(1)对单个叶片进行高效分类;(2)探索植物叶片形状空间,这在特定种群变异研究中很重要;(3)比较整个植物物种,这对植物进化关系研究至关重要。我们的方法不需要描述符或地标,而是自动求解使一对形状对齐的最优配准。我们在公开可用的基准数据集(如Flavia、Swedish和ImageCLEF2011植物叶片数据集)上评估了所提出框架的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验