Stančin Sara, Tomažič Sašo
Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia.
Sensors (Basel). 2014 Aug 13;14(8):14885-915. doi: 10.3390/s140814885.
We propose calibration methods for microelectromechanical system (MEMS) 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations.
我们提出了针对微机电系统(MEMS)3D加速度计和陀螺仪的校准方法,这些方法在时间和计算复杂度方面都很高效。两种传感器的校准过程都很简单,不需要额外的昂贵设备,并且可以在运动测量之前或之间在现场进行。这些方法依赖于少量定义好的校准测量,用于获取12个校准参数的值。这个过程能够对传感器的不准确性进行静态补偿。3D传感器检测到的值使用广义3D传感器模型进行解释。该模型假设传感器检测到的值等于测量值在传感器灵敏度轴上的投影。虽然这一发现对于3D加速度计来说很平常,但其对3D陀螺仪的有效性并非立竿见影;因此,本文详细阐述了后一个主题。对于一个示例传感器设备,通过对3D加速度计进行约1.5分钟时长的校准测量以及对3D陀螺仪进行2.5分钟时长的校准测量来确定校准参数。在进一步测量中使用已确定的校准参数对每个检测到的3D值进行校正仅需要九次加法和九次乘法运算。