Suppr超能文献

预测数据缺乏物种的保护状况。

Predicting the conservation status of data-deficient species.

机构信息

Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, United Kingdom; Division of Biology, Imperial College London, Silwood Park, Ascot, SL5 7PY, United Kingdom.

出版信息

Conserv Biol. 2015 Feb;29(1):250-9. doi: 10.1111/cobi.12372. Epub 2014 Aug 13.

Abstract

There is little appreciation of the level of extinction risk faced by one-sixth of the over 65,000 species assessed by the International Union for Conservation of Nature. Determining the status of these data-deficient (DD) species is essential to developing an accurate picture of global biodiversity and identifying potentially threatened DD species. To address this knowledge gap, we used predictive models incorporating species' life history, geography, and threat information to predict the conservation status of DD terrestrial mammals. We constructed the models with 7 machine learning (ML) tools trained on species of known status. The resultant models showed very high species classification accuracy (up to 92%) and ability to correctly identify centers of threatened species richness. Applying the best model to DD species, we predicted 313 of 493 DD species (64%) to be at risk of extinction, which increases the estimated proportion of threatened terrestrial mammals from 22% to 27%. Regions predicted to contain large numbers of threatened DD species are already conservation priorities, but species in these areas show considerably higher levels of risk than previously recognized. We conclude that unless directly targeted for monitoring, species classified as DD are likely to go extinct without notice. Taking into account information on DD species may therefore help alleviate data gaps in biodiversity indicators and conserve poorly known biodiversity.

摘要

人们对 65000 多种已评估物种中六分之一所面临的灭绝风险程度认识不足,而这些物种是由国际自然保护联盟评估的。确定这些数据不足(DD)物种的状况对于准确了解全球生物多样性和识别潜在受威胁的 DD 物种至关重要。为了弥补这一知识空白,我们使用了包含物种生活史、地理位置和威胁信息的预测模型来预测 DD 陆地哺乳动物的保护状况。我们使用 7 种经过训练的机器学习(ML)工具构建了基于已知状况物种的模型。这些模型表现出非常高的物种分类准确性(高达 92%),并且能够正确识别受威胁物种丰富度的中心。将最佳模型应用于 DD 物种,我们预测了 493 种 DD 物种中的 313 种(64%)有灭绝风险,这将受威胁的陆地哺乳动物的估计比例从 22%提高到 27%。预测存在大量受威胁 DD 物种的地区已经是保护重点,但这些地区的物种面临的风险水平比之前认为的要高得多。我们的结论是,如果不直接针对监测,DD 物种很可能在不知不觉中灭绝。因此,考虑到 DD 物种的信息可能有助于缓解生物多样性指标中的数据空白,并保护人们知之甚少的生物多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验