Mouse Imaging Centre, Hospital for Sick Children Toronto, ON, Canada.
Kimel Family Translational Imaging-Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada.
Front Neuroinform. 2014 Jul 30;8:67. doi: 10.3389/fninf.2014.00067. eCollection 2014.
Using neuroimaging technologies to elucidate the relationship between genotype and phenotype and brain and behavior will be a key contribution to biomedical research in the twenty-first century. Among the many methods for analyzing neuroimaging data, image registration deserves particular attention due to its wide range of applications. Finding strategies to register together many images and analyze the differences between them can be a challenge, particularly given that different experimental designs require different registration strategies. Moreover, writing software that can handle different types of image registration pipelines in a flexible, reusable and extensible way can be challenging. In response to this challenge, we have created Pydpiper, a neuroimaging registration toolkit written in Python. Pydpiper is an open-source, freely available software package that provides multiple modules for various image registration applications. Pydpiper offers five key innovations. Specifically: (1) a robust file handling class that allows access to outputs from all stages of registration at any point in the pipeline; (2) the ability of the framework to eliminate duplicate stages; (3) reusable, easy to subclass modules; (4) a development toolkit written for non-developers; (5) four complete applications that run complex image registration pipelines "out-of-the-box." In this paper, we will discuss both the general Pydpiper framework and the various ways in which component modules can be pieced together to easily create new registration pipelines. This will include a discussion of the core principles motivating code development and a comparison of Pydpiper with other available toolkits. We also provide a comprehensive, line-by-line example to orient users with limited programming knowledge and highlight some of the most useful features of Pydpiper. In addition, we will present the four current applications of the code.
利用神经影像学技术阐明基因型与表型、大脑与行为之间的关系,将是 21 世纪生物医学研究的一个关键贡献。在分析神经影像学数据的众多方法中,由于其应用广泛,图像配准尤其值得关注。找到将许多图像配准并分析它们之间差异的策略可能是一个挑战,特别是因为不同的实验设计需要不同的配准策略。此外,编写能够以灵活、可重用和可扩展的方式处理不同类型的图像配准管道的软件可能具有挑战性。为了应对这一挑战,我们创建了一个用 Python 编写的神经影像配准工具包 Pydpiper。Pydpiper 是一个开源的、免费提供的软件包,为各种图像配准应用提供了多个模块。Pydpiper 提供了五个关键创新。具体来说:(1)一个强大的文件处理类,允许在管道的任何阶段访问配准的所有阶段的输出;(2)框架消除重复阶段的能力;(3)可重用、易于子类化的模块;(4)为非开发人员编写的开发工具包;(5)四个完整的应用程序,可以“开箱即用”运行复杂的图像配准管道。在本文中,我们将讨论一般的 Pydpiper 框架以及如何将组件模块组合在一起以轻松创建新的配准管道。这将包括讨论激励代码开发的核心原则,并将 Pydpiper 与其他可用工具包进行比较。我们还提供了一个全面的、逐行的示例,为具有有限编程知识的用户提供指导,并突出显示 Pydpiper 的一些最有用的功能。此外,我们将介绍代码的四个当前应用程序。