Suppr超能文献

具有“意外”感觉后果的自我产生运动。

Self-generated movements with "unexpected" sensory consequences.

作者信息

Tiriac Alexandre, Del Rio-Bermudez Carlos, Blumberg Mark S

机构信息

Department of Psychology, University of Iowa, Iowa City, IA 52242, USA; Delta Center, University of Iowa, Iowa City, IA 52242, USA.

Department of Psychology, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Curr Biol. 2014 Sep 22;24(18):2136-2141. doi: 10.1016/j.cub.2014.07.053. Epub 2014 Aug 14.

Abstract

The nervous systems of diverse species, including worms and humans, possess mechanisms for distinguishing between sensations arising from self-generated (i.e., expected) movements from those arising from other-generated (i.e., unexpected) movements [1-3]. To make this critical distinction, animals generate copies, or corollary discharges, of motor commands [4, 5]. Corollary discharge facilitates the selective gating of reafferent signals arising from self-generated movements, thereby enhancing detection of novel stimuli [6-10]. However, for a developing nervous system, such sensory gating would be counterproductive if it impedes transmission of the very activity upon which activity-dependent mechanisms depend [11]. In infant rats during active (or REM) sleep--a behavioral state that predominates in early infancy [12-16]--neural circuits within the brainstem [17, 18] trigger hundreds of thousands of myoclonic twitches each day [19]. The putative contribution of these self-generated movements to the activity-dependent development of the sensorimotor system is supported by the observation that reafference from twitching limbs reliably and substantially triggers brain activity [20-23]. In contrast, under identical testing conditions, even the most vigorous wake movements reliably fail to trigger reafferent brain activity [21-23]. One hypothesis that accounts for this paradox is that twitches, uniquely among self-generated movements, lack corollary discharge [23]. Here, we test this hypothesis in newborn rats by manipulating the degree to which self-generated movements are expected and, therefore, their presumed recruitment of corollary discharge. We show that twitches, although self-generated, are processed as if they are unexpected.

摘要

包括蠕虫和人类在内的不同物种的神经系统,拥有区分自我产生(即预期)运动所产生的感觉与其他产生(即意外)运动所产生的感觉的机制[1-3]。为了做出这一关键区分,动物会生成运动指令的副本或伴随放电[4,5]。伴随放电有助于对自我产生运动所产生的再传入信号进行选择性门控,从而增强对新刺激的检测[6-10]。然而,对于发育中的神经系统来说,如果这种感觉门控阻碍了依赖活动的机制所依赖的活动的传递,那么它将适得其反[11]。在幼鼠的活跃(或快速眼动)睡眠期间——这是婴儿早期占主导地位的行为状态[12-16]——脑干内的神经回路[17,18]每天会触发数十万次肌阵挛抽搐[19]。这些自我产生的运动对感觉运动系统依赖活动的发育的假定贡献得到了以下观察结果的支持:抽搐肢体的再传入可靠且大量地触发大脑活动[20-23]。相比之下,在相同测试条件下,即使是最剧烈的清醒运动也可靠地无法触发再传入大脑活动[21-23]。解释这一悖论的一种假设是,抽搐在自我产生的运动中独一无二地缺乏伴随放电[23]。在这里,我们通过操纵自我产生运动的预期程度,从而操纵其假定的伴随放电的募集,来在新生大鼠中测试这一假设。我们表明,抽搐虽然是自我产生的,但却被当作意外的运动来处理。

相似文献

1
Self-generated movements with "unexpected" sensory consequences.
Curr Biol. 2014 Sep 22;24(18):2136-2141. doi: 10.1016/j.cub.2014.07.053. Epub 2014 Aug 14.
3
Developmentally Unique Cerebellar Processing Prioritizes Self- over Other-Generated Movements.
J Neurosci. 2024 May 8;44(19):e2345232024. doi: 10.1523/JNEUROSCI.2345-23.2024.
4
Developmentally unique cerebellar processing prioritizes self-over other-generated movements.
bioRxiv. 2024 Mar 30:2023.12.16.571990. doi: 10.1101/2023.12.16.571990.
5
Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex.
Curr Biol. 2020 Jun 22;30(12):2404-2410.e4. doi: 10.1016/j.cub.2020.04.045. Epub 2020 May 14.
6
Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies.
Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.
7
Myoclonic Twitching and Sleep-Dependent Plasticity in the Developing Sensorimotor System.
Curr Sleep Med Rep. 2015 Mar;1(1):74-79. doi: 10.1007/s40675-015-0009-9.
8
Sensorimotor processing in the newborn rat red nucleus during active sleep.
J Neurosci. 2015 May 27;35(21):8322-32. doi: 10.1523/JNEUROSCI.0564-15.2015.
9
REM sleep twitches rouse nascent cerebellar circuits: Implications for sensorimotor development.
Dev Neurobiol. 2015 Oct;75(10):1140-53. doi: 10.1002/dneu.22177. Epub 2014 Apr 25.
10
A new view of "dream enactment" in REM sleep behavior disorder.
Sleep Med Rev. 2016 Dec;30:34-42. doi: 10.1016/j.smrv.2015.12.002. Epub 2015 Dec 17.

引用本文的文献

1
Inducible NMDA receptor knockdown reveals a maintenance phase in dendritic refinement of barrel cortex neurons.
iScience. 2025 Jul 29;28(8):113229. doi: 10.1016/j.isci.2025.113229. eCollection 2025 Aug 15.
2
Sensorimotor variability distinguishes early features of cognition in toddlers with autism.
iScience. 2024 Aug 6;27(9):110685. doi: 10.1016/j.isci.2024.110685. eCollection 2024 Sep 20.
3
Early-life maturation of the somatosensory cortex: sensory experience and beyond.
Front Neural Circuits. 2024 Jul 8;18:1430783. doi: 10.3389/fncir.2024.1430783. eCollection 2024.
4
Activity-dependent dendrite patterning in the postnatal barrel cortex.
Front Neural Circuits. 2024 May 17;18:1409993. doi: 10.3389/fncir.2024.1409993. eCollection 2024.
5
Neural decoding reveals specialized kinematic tuning after an abrupt cortical transition.
Cell Rep. 2023 Sep 26;42(9):113119. doi: 10.1016/j.celrep.2023.113119. Epub 2023 Sep 9.
6
Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse.
Front Neuroanat. 2023 Jan 25;17:1105998. doi: 10.3389/fnana.2023.1105998. eCollection 2023.
8
Protracted development of motor cortex constrains rich interpretations of infant cognition.
Trends Cogn Sci. 2023 Mar;27(3):233-245. doi: 10.1016/j.tics.2022.12.014. Epub 2023 Jan 20.
9
Sleep, plasticity, and sensory neurodevelopment.
Neuron. 2022 Oct 19;110(20):3230-3242. doi: 10.1016/j.neuron.2022.08.005. Epub 2022 Sep 8.
10
Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development.
Front Neural Circuits. 2022 May 18;16:911023. doi: 10.3389/fncir.2022.911023. eCollection 2022.

本文引用的文献

1
REM sleep twitches rouse nascent cerebellar circuits: Implications for sensorimotor development.
Dev Neurobiol. 2015 Oct;75(10):1140-53. doi: 10.1002/dneu.22177. Epub 2014 Apr 25.
2
A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
Nat Neurosci. 2014 Mar;17(3):416-22. doi: 10.1038/nn.3650. Epub 2014 Feb 16.
3
A role for correlated spontaneous activity in the assembly of neural circuits.
Neuron. 2013 Dec 4;80(5):1129-44. doi: 10.1016/j.neuron.2013.10.030.
4
Reflections on agranular architecture: predictive coding in the motor cortex.
Trends Neurosci. 2013 Dec;36(12):706-16. doi: 10.1016/j.tins.2013.09.004. Epub 2013 Oct 22.
5
Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies.
Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.
7
Twitching in sensorimotor development from sleeping rats to robots.
Curr Biol. 2013 Jun 17;23(12):R532-7. doi: 10.1016/j.cub.2013.04.075.
8
The primate cerebellum selectively encodes unexpected self-motion.
Curr Biol. 2013 Jun 3;23(11):947-55. doi: 10.1016/j.cub.2013.04.029. Epub 2013 May 16.
9
Rapid whisker movements in sleeping newborn rats.
Curr Biol. 2012 Nov 6;22(21):2075-80. doi: 10.1016/j.cub.2012.09.009. Epub 2012 Oct 18.
10
Self-organization of reflexive behavior from spontaneous motor activity.
Biol Cybern. 2013 Feb;107(1):25-37. doi: 10.1007/s00422-012-0521-7. Epub 2012 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验