Suppr超能文献

溶液中多组分纳米晶体的非化学计量成核和生长。

Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution.

机构信息

Department of Materials Science and Engineering, Yonsei University , 134 Shinchon-dong, Seoul 120-749, Korea.

出版信息

Acc Chem Res. 2014 Oct 21;47(10):2887-93. doi: 10.1021/ar500133w. Epub 2014 Aug 18.

Abstract

The ability to assemble nanoscale functional building blocks is a useful and modular way for scientists to design valuable materials with specific physical and chemical properties. Chemists expect multicomponent, heterostructured nanocrystals to show unique electrical, thermal, and optical properties not seen in homogeneous, single-phase nanocrystals. Although researchers have made remarkable advances in heterogeneous nucleation and growth, design of synthetic conditions for obtaining nanocrystals with a target composition and shape is still a big challenge. There are several outstanding issues that chemists need to address before they can successfully carry out the design-based synthesis of multicomponent nanocrystals. For instance, small changes in the reaction parameters, such as the precursor, solvent, surfactant, reducing agent, and the reaction temperature, often result in changes in the structure and chemical composition of the final product. Although scientists do not fully understand the mechanisms underlying the nucleation and growth processes involved in the synthesis of these multicomponent nanocrystals, recent progress in understanding of the thermodynamic and kinetic factors have improved our control over their final structure and chemical composition. In this Account, we summarize our recent advances in understanding of the nucleation and growth mechanisms involved in the solution-based synthesis of multicomponent nanocrystals. We also discuss the various challenges encountered in their synthesis, emphasizing what still needs special consideration. We first discuss the three different nucleation paths from a thermodynamics perspective: amorphous nucleation, crystalline nucleation, and two-step nucleation. Amorphous nucleation and two-step nucleation involve the generation of nonstoichiometric nuclei. We initiate this process mainly by introducing an imbalance in the concentrations of the reduced elements. When the nonstoichiometric nuclei grow, we can add secondary elements to the growing nonstoichiometric nuclei. This leads to either the physical deposition or atomic mixture formation through the diffusion and rearrangement of constituents. The processes of mixture formation and the physical deposition of the secondary constituent element also compete and determine the shape and chemical composition of the final product. If the free energy change by mixture formation is positive (ΔGAB ≥ 0), physical deposition takes place predominantly, and the spreading coefficient (S) determines the structure of the nanocrystals. However, when mixture formation is highly spontaneous (ΔGAB < -ξ), the chemical composition of the final product is usually stoichiometric, and its shape then depends on the size of the primary nanocrystals. When the mixture formation and physical deposition are in competition (-ξ ≤ ΔGAB < 0), as commonly seen for many nanoalloy systems, both the chemical composition and the structure are determined by the size of the primary nanocrystals as well as the degree of mixture formation at the interface of the constituent components. Finally, we discuss the challenges and caveats that one needs to take into account when synthesizing multicomponent nanocrystals.

摘要

将纳米级功能构建块组装在一起是科学家设计具有特定物理和化学性质的有价值材料的一种有用且模块化的方法。化学家们预计多组分、异质结构的纳米晶体将表现出独特的电、热和光学性质,而这些性质在同质、单相纳米晶体中是看不到的。尽管研究人员在异质成核和生长方面取得了显著进展,但设计获得具有目标组成和形状的纳米晶体的合成条件仍然是一个巨大的挑战。化学家们在成功进行基于设计的多组分纳米晶体合成之前,还有几个悬而未决的问题需要解决。例如,反应参数(如前体、溶剂、表面活性剂、还原剂和反应温度)的微小变化往往会导致最终产物的结构和化学成分发生变化。尽管科学家们并不完全了解这些多组分纳米晶体合成过程中涉及的成核和生长机制的基础,但最近在理解热力学和动力学因素方面的进展提高了我们对最终结构和化学组成的控制能力。在本专题介绍中,我们总结了我们在理解基于溶液的多组分纳米晶体合成中成核和生长机制方面的最新进展。我们还讨论了在它们的合成中遇到的各种挑战,强调了仍需要特别考虑的问题。我们首先从热力学的角度讨论了三种不同的成核途径:非晶成核、晶成核和两步成核。非晶成核和两步成核涉及非化学计量核的生成。我们主要通过引入还原元素浓度的不平衡来启动这个过程。当非化学计量核生长时,我们可以向生长的非化学计量核中添加二次元素。这导致通过组成部分的扩散和重排来进行物理沉积或原子混合物的形成。混合物形成和二次组成元素的物理沉积过程也相互竞争,并决定最终产物的形状和化学组成。如果混合物形成的自由能变化为正(ΔGAB≥0),则主要发生物理沉积,铺展系数(S)决定纳米晶体的结构。然而,当混合物形成非常自发时(ΔGAB<-ξ),最终产物的化学组成通常是化学计量的,其形状则取决于初级纳米晶体的大小。当混合物形成和物理沉积相互竞争时(-ξ<ΔGAB<0),就像许多纳米合金体系中常见的那样,最终产物的化学组成和结构都取决于初级纳米晶体的大小以及组成成分界面处的混合物形成程度。最后,我们讨论了在合成多组分纳米晶体时需要考虑的挑战和注意事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验