Suppr超能文献

优化数据系统:临床预测与决策支持的未来

Optimal data systems: the future of clinical predictions and decision support.

作者信息

Celi Leo A, Csete Marie, Stone David

机构信息

aMassachusetts Institute of Technology, Cambridge, Massachusetts bHuntington Medical Research Institutes, Pasadena, California cUniversity of Virginia School of Medicine, Charlottesville, Virginia, USA *Dr Leo A. Celi, Dr Marie Csete, and Dr David Stone contributed equally to this manuscript.

出版信息

Curr Opin Crit Care. 2014 Oct;20(5):573-80. doi: 10.1097/MCC.0000000000000137.

Abstract

PURPOSE OF REVIEW

The purpose of the review is to describe the evolving concept and role of data as it relates to clinical predictions and decision-making.

RECENT FINDINGS

Critical care medicine is, as an especially data-rich specialty, becoming acutely cognizant not only of its historic deficits in data utilization but also of its enormous potential for capturing, mining, and leveraging such data into well-designed decision support modalities as well as the formulation of robust best practices.

SUMMARY

Modern electronic medical records create an opportunity to design complete and functional data systems that can support clinical care to a degree never seen before. Such systems are often referred to as 'data-driven,' but a better term is 'optimal data systems' (ODS). Here we discuss basic features of an ODS and its benefits, including the potential to transform clinical prediction and decision support.

摘要

综述目的

本综述旨在描述数据在临床预测和决策制定方面不断演变的概念及作用。

最新发现

重症医学作为一个数据特别丰富的专业领域,不仅日益敏锐地意识到其在数据利用方面长期存在的不足,还认识到它在收集、挖掘和利用这些数据以构建精心设计的决策支持模式以及制定强有力的最佳实践方面具有巨大潜力。

总结

现代电子病历为设计完整且实用的数据系统创造了机会,这些系统能够以前所未有的程度支持临床护理。此类系统常被称为“数据驱动型”,但一个更好的术语是“最优数据系统”(ODS)。在此,我们讨论最优数据系统的基本特征及其益处,包括其在改变临床预测和决策支持方面的潜力。

相似文献

1
Optimal data systems: the future of clinical predictions and decision support.
Curr Opin Crit Care. 2014 Oct;20(5):573-80. doi: 10.1097/MCC.0000000000000137.
2
The electronic medical record, safety, and critical care.
Crit Care Clin. 2005 Jan;21(1):55-79, viii. doi: 10.1016/j.ccc.2004.08.001.
6
E-Health towards ecumenical framework for personalized medicine via Decision Support System.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2881-5. doi: 10.1109/IEMBS.2010.5626308.
10
Computerized clinical decision-support in respiratory care.
Respir Care. 2004 Apr;49(4):378-86; discussion 386-8.

引用本文的文献

1
Dealing with information overload: a comprehensive review.
Front Psychol. 2023 Jun 21;14:1122200. doi: 10.3389/fpsyg.2023.1122200. eCollection 2023.
2
AI in the treatment of fertility: key considerations.
J Assist Reprod Genet. 2020 Nov;37(11):2817-2824. doi: 10.1007/s10815-020-01950-z. Epub 2020 Sep 29.
3
Decompensation in Critical Care: Early Prediction of Acute Heart Failure Onset.
JMIR Med Inform. 2020 Aug 7;8(8):e19892. doi: 10.2196/19892.
5
Perpetual and Virtual Patients for Cardiorespiratory Physiological Studies.
J Pediatr Intensive Care. 2016 Sep;5(3):122-128. doi: 10.1055/s-0035-1569998. Epub 2015 Dec 15.
6
Clinical Note Creation, Binning, and Artificial Intelligence.
JMIR Med Inform. 2017 Aug 3;5(3):e24. doi: 10.2196/medinform.7627.
8
Mortality profile across our Intensive Care Units: A 5-year database report from a Singapore restructured hospital.
Indian J Crit Care Med. 2015 Dec;19(12):726-7. doi: 10.4103/0972-5229.171401.
9
Disrupting Electronic Health Records Systems: The Next Generation.
JMIR Med Inform. 2015 Oct 23;3(4):e34. doi: 10.2196/medinform.4192.
10
State of the art review: the data revolution in critical care.
Crit Care. 2015 Mar 16;19(1):118. doi: 10.1186/s13054-015-0801-4.

本文引用的文献

1
Dynamic clinical data mining: search engine-based decision support.
JMIR Med Inform. 2014 Jun 23;2(1):e13. doi: 10.2196/medinform.3110.
3
Improving clinical practice guidelines.
JAMA Intern Med. 2014 Feb 1;174(2):181. doi: 10.1001/jamainternmed.2013.7662.
5
The frequency and cost of treatment perceived to be futile in critical care.
JAMA Intern Med. 2013 Nov 11;173(20):1887-94. doi: 10.1001/jamainternmed.2013.10261.
6
Barriers and decisions when answering clinical questions at the point of care: a grounded theory study.
JAMA Intern Med. 2013 Nov 25;173(21):1962-9. doi: 10.1001/jamainternmed.2013.10103.
7
"Big data" in the intensive care unit. Closing the data loop.
Am J Respir Crit Care Med. 2013 Jun 1;187(11):1157-60. doi: 10.1164/rccm.201212-2311ED.
8
Get to the point in intensive care medicine--the sooner the better?
Crit Care. 2013;17 Suppl 1(Suppl 1):S8. doi: 10.1186/cc11506. Epub 2013 Mar 12.
10
Reducing unnecessary lab testing in the ICU with artificial intelligence.
Int J Med Inform. 2013 May;82(5):345-58. doi: 10.1016/j.ijmedinf.2012.11.017. Epub 2012 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验