Suppr超能文献

Interactions of N2O5 and related nitrogen oxides with ice surfaces: desorption kinetics and collision dynamics.

作者信息

Romero Lejonthun Liza S E, Andersson Patrik U, Hallquist Mattias, Thomson Erik S, Pettersson Jan B C

机构信息

Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg , SE-412 96 Gothenburg, Sweden.

出版信息

J Phys Chem B. 2014 Nov 26;118(47):13427-34. doi: 10.1021/jp5053826. Epub 2014 Aug 29.

Abstract

The detailed interactions of nitrogen oxides with ice are of fundamental interest and relevance for chemistry in cold regions of the atmosphere. Here, the interactions of NO, NO2, N2O4, and N2O5 with ice surfaces at temperatures between 93 and 180 K are investigated with molecular beam techniques. Surface collisions are observed to result in efficient transfer of kinetic energy and trapping of molecules on the ice surfaces. NO and NO2 rapidly desorb from pure ice with upper bounds for the surface binding energies of 0.16 ± 0.02 and 0.26 ± 0.03 eV, respectively. Above 150 K, N2O4 desorption follows first-order kinetics and is well described by the Arrhenius parameters Ea = 0.39 ± 0.04 eV and A = 10((15.4±1.2)) s(-1), while a stable N2O4 adlayer is formed at lower temperatures. A fraction of incoming N2O5 reacts to form HNO3 on the ice surface. The N2O5 desorption rates are substantially lower on pure water ice (Arrhenius parameters: Ea = 0.36 ± 0.02 eV; A = 10((15.3±0.7)) s(-1)) than on HNO3-covered ice (Ea = 0.24 ± 0.02 eV; A = 10((11.5±0.7)) s(-1)). The N2O5 desorption kinetics also sensitively depend on the sub-monolayer coverage of HNO3, with a minimum in N2O5 desorption rate at a low but finite coverage of HNO3. The studies show that none of the systems with resolvable desorption kinetics undergo ordinary desorption from ice, and instead desorption likely involves two or more surface states, with additional complexity added by coadsorbed molecules.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验