Suppr超能文献

用啁啾磁共振脉冲操纵量子点中的核自旋系综。

Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses.

机构信息

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

1] Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland [2] Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

出版信息

Nat Nanotechnol. 2014 Sep;9(9):671-5. doi: 10.1038/nnano.2014.175. Epub 2014 Aug 24.

Abstract

The nuclear spins in nanostructured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts; and nanoscale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.

摘要

在纳米结构半导体中,核自旋在量子应用中起着核心作用。核自旋代表了产生局部磁场的有用资源,但核自旋噪声是自旋量子位退相的主要来源。控制核自旋可以增强资源,同时抑制噪声。NMR 技术具有挑战性:III 族和 V 族同位素的自旋很大,其旋磁比差异很大;在应变材料中,存在很大的原子相关四极矩位移;纳米级 NMR 很难检测。我们使用啁啾射频脉冲报告了量子点中 100000 个核自旋的 NMR。在极化之后,我们证明了核自旋的反转。我们可以来回翻转核自旋一百次。我们证明,啁啾 NMR 是一种强大的方法,可以确定所有主要同位素的化学组成、初始核自旋温度和四极频率分布。关键观察是 NMR 信号随扫描速率的函数出现平台:我们同时为所有同位素实现了第一次量子跃迁的反转。这些实验代表了一种用于操纵纳米级非均匀核自旋系综的通用技术,并为探测此类介观系统的相干性开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验