Suppr超能文献

在不同插入速度下将针插入大脑过程中针力和摩擦应力的体内评估。

In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain.

作者信息

Casanova Fernando, Carney Paul R, Sarntinoranont Malisa

机构信息

Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA; Escuela de Ingeniería Mecánica, Universidad del Valle, Cali, Colombia.

Department of Pediatrics, Neurology, Neuroscience, and J. Crayton Pruitt Family Department of Biomedical Engineering, Wilder Center of Excellence for Epilepsy Research, Gainesville, FL, USA.

出版信息

J Neurosci Methods. 2014 Nov 30;237:79-89. doi: 10.1016/j.jneumeth.2014.08.012. Epub 2014 Aug 20.

Abstract

BACKGROUND

Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in tissue damage which can promote flowback along the needle track and improper targeting. The goal of this study was to evaluate friction stress (calculated from needle insertion force) as a measure of tissue contact and damage during needle insertion for varying insertion speeds.

NEW METHOD

Forces and surface dimpling during needle insertion were measured in rat brain in vivo. Needle retraction forces were used to calculate friction stresses. These measures were compared to track damage from a previous study. Differences between brain tissues and soft hydrogels were evaluated for varying insertion speeds: 0.2, 2, and 10mm/s.

RESULTS

In brain tissue, average insertion force and surface dimpling increased with increasing insertion speed. Average friction stress along the needle-tissue interface decreased with insertion speed (from 0.58 ± 0.27 to 0.16 ± 0.08 kPa). Friction stress varied between brain regions: cortex (0.227 ± 0.27 kPa), external capsule (0.222 ± 0.19 kPa), and CPu (0.383 ± 0.30 kPa). Hydrogels exhibited opposite trends for dimpling and friction stress with insertion speed.

COMPARISON WITH EXISTING METHODS

Previously, increasing needle damage with insertion speed has been measured with histological methods. Friction stress appears to decrease with increasing tissue damage and decreasing tissue contact, providing the potential for in vivo and real time evaluation along the needle track.

CONCLUSION

Force derived friction stress decreased with increasing insertion speed and was smaller within white matter regions. Hydrogels exhibited opposite trends to brain tissue.

摘要

背景

对流增强递送(CED)将药物直接注入脑组织。需要插入针头,这会导致组织损伤,进而促进沿针道的回流和靶向不当。本研究的目的是评估摩擦应力(由针头插入力计算得出),以此作为不同插入速度下针头插入过程中组织接触和损伤的一种度量。

新方法

在大鼠脑内活体测量针头插入过程中的力和表面凹陷。用针头回缩力计算摩擦应力。将这些测量结果与先前一项研究中的针道损伤情况进行比较。针对不同的插入速度(0.2、2和10毫米/秒)评估脑组织和软水凝胶之间的差异。

结果

在脑组织中,平均插入力和表面凹陷随插入速度增加而增大。沿针 - 组织界面的平均摩擦应力随插入速度降低(从0.58±0.27千帕降至0.16±0.08千帕)。摩擦应力在不同脑区有所不同:皮层(0.227±0.27千帕)、外囊(0.222±0.19千帕)和尾壳核(0.383±0.30千帕)。水凝胶在凹陷和摩擦应力随插入速度变化方面呈现相反趋势。

与现有方法的比较

以前,用组织学方法测量了随着插入速度增加针头损伤情况。摩擦应力似乎随着组织损伤增加和组织接触减少而降低,这为沿针道进行体内实时评估提供了可能性。

结论

由力得出的摩擦应力随插入速度增加而降低,在白质区域较小。水凝胶呈现出与脑组织相反的趋势。

相似文献

1
In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain.
J Neurosci Methods. 2014 Nov 30;237:79-89. doi: 10.1016/j.jneumeth.2014.08.012. Epub 2014 Aug 20.
3
Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.
J Mech Behav Biomed Mater. 2016 Mar;56:98-105. doi: 10.1016/j.jmbbm.2015.11.024. Epub 2015 Dec 4.
4
Influence of needle insertion speed on backflow for convection-enhanced delivery.
J Biomech Eng. 2012 Apr;134(4):041006. doi: 10.1115/1.4006404.
5
SU-D-213AB-06: Surface Texture and Insertion Speed Effect on Needle Friction.
Med Phys. 2012 Jun;39(6Part3):3612. doi: 10.1118/1.4734666.
6
Effect of composite coating on insertion mechanics of needle structure in soft materials.
Med Eng Phys. 2021 Sep;95:104-110. doi: 10.1016/j.medengphy.2021.07.008. Epub 2021 Aug 11.
7
Experimental and analytical study on insertion force of composite-coated needle in soft tissue material.
Proc Inst Mech Eng H. 2023 Sep;237(9):1061-1071. doi: 10.1177/09544119231191910. Epub 2023 Aug 13.
8
Effect of vibration frequency on frictional resistance of brain tissue during vibration-assisted needle insertion.
Med Eng Phys. 2020 Dec;86:35-40. doi: 10.1016/j.medengphy.2020.10.003. Epub 2020 Oct 10.
9
Study of Tissue Damage Induced by Insertion of Composite-Coated Needle.
Med Eng Phys. 2024 Jan;123:104094. doi: 10.1016/j.medengphy.2023.104094. Epub 2023 Dec 23.
10
Antifriction Mechanism of Longitudinal Vibration-Assisted Insertion in DBS.
Ann Biomed Eng. 2021 Sep;49(9):2057-2065. doi: 10.1007/s10439-021-02730-1. Epub 2021 Jan 21.

引用本文的文献

5
Experimental Study of Needle Insertion into Gerbil Tympanic Membrane.
J Assoc Res Otolaryngol. 2024 Oct;25(5):427-450. doi: 10.1007/s10162-024-00953-2. Epub 2024 Jul 11.
6
Cracking modes and force dynamics in the insertion of neural probes into hydrogel brain phantom.
J Neural Eng. 2024 Jul 5;21(4):046009. doi: 10.1088/1741-2552/ad5937.
8
Backflow reduction in local injection therapy with gelatin formulations.
Drug Deliv. 2024 Dec;31(1):2329100. doi: 10.1080/10717544.2024.2329100. Epub 2024 Mar 22.
9
Impact of Injection-Based Delivery Parameters on Local Distribution Volume of Ethyl-Cellulose Ethanol Gel in Tissue and Tissue Mimicking Phantoms.
IEEE Trans Biomed Eng. 2024 May;71(5):1488-1498. doi: 10.1109/TBME.2023.3340613. Epub 2024 Apr 22.

本文引用的文献

2
Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices.
J Mech Behav Biomed Mater. 2014 Jan;29:213-24. doi: 10.1016/j.jmbbm.2013.08.026. Epub 2013 Sep 9.
3
Influence of needle insertion speed on backflow for convection-enhanced delivery.
J Biomech Eng. 2012 Apr;134(4):041006. doi: 10.1115/1.4006404.
4
Needle-tissue interaction forces--a survey of experimental data.
Med Eng Phys. 2012 Jul;34(6):665-80. doi: 10.1016/j.medengphy.2012.04.007. Epub 2012 May 22.
5
A response surface model predicting the in vivo insertion behavior of micromachined neural implants.
J Neural Eng. 2012 Feb;9(1):016005. doi: 10.1088/1741-2560/9/1/016005. Epub 2011 Dec 13.
6
Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe.
IEEE Trans Biomed Eng. 2011 Nov;58(11):3250-9. doi: 10.1109/TBME.2011.2166963. Epub 2011 Sep 1.
7
An evaluation of the relationships between catheter design and tissue mechanics in achieving high-flow convection-enhanced delivery.
J Neurosci Methods. 2011 Jul 15;199(1):87-97. doi: 10.1016/j.jneumeth.2011.04.027. Epub 2011 Apr 27.
8
A detailed viscoelastic characterization of the P17 and adult rat brain.
J Neurotrauma. 2011 Nov;28(11):2235-44. doi: 10.1089/neu.2010.1604. Epub 2011 May 25.
9
Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials.
J Biomed Mater Res B Appl Biomater. 2011 Apr;97(1):84-95. doi: 10.1002/jbm.b.31789. Epub 2011 Feb 2.
10
Design of an in-dwelling cannula for convection-enhanced delivery.
J Neurosci Methods. 2011 Mar 15;196(1):118-23. doi: 10.1016/j.jneumeth.2010.12.022. Epub 2010 Dec 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验