Suppr超能文献

选择性关联;而非巫术。

Selective correlations; not voodoo.

作者信息

Rosenblatt J D, Benjamini Y

机构信息

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; The Sagol School of Neurosciences, Tel Aviv University, Israel.

出版信息

Neuroimage. 2014 Dec;103:401-410. doi: 10.1016/j.neuroimage.2014.08.023. Epub 2014 Aug 19.

Abstract

The problem of "voodoo" correlations-exceptionally high observed correlations in selected regions of the brain-is well recognized in neuroimaging. It arises when quantities of interest are estimated from the same data that was used to select them as interesting. In statistical terminology, the problem of inference following selection from the same data is that of selective inference. Motivated by the unwelcome side-effects of splitting the data- the recommended remedy-we adapt the recent developments in selective inference in order to construct confidence intervals (CIs) with good reproducibility prospects, even if selection and estimation are done with the same data. These intervals control the expected proportion of non-covered correlations in the selected voxels-the False Coverage Rate (FCR). They extend further toward zero than standard intervals, thus attenuating the impression made by highly biased observed correlations. They do so adaptively, in that they coincide with the standard CIs when far away from the selection point. We complement existing analytic proofs with a simulation, showing that the proposed intervals control the FCR in realistic social neuroscience problems. We also suggest a "confidence calibration plot", to allow the intervals to be reported in a clear and interpretable way. Applying the proposed methodology on a loss-aversion study, we demonstrate that with the sample size and selection type employed, selection bias is considerable. Finally, selective intervals are compared to the currently recommended data-splitting approach. We discover that our approach has more power and typically more informative, as no data is discarded. Computation of the intervals is implemented in an accompanying software package.

摘要

“巫毒”相关性问题——在大脑特定区域观察到的异常高相关性——在神经影像学中已得到充分认识。当从用于将感兴趣的量选为有趣量的数据中估计这些量时,就会出现这个问题。用统计学术语来说,从同一数据中进行选择后的推断问题就是选择性推断问题。鉴于拆分数据带来的不良副作用(这是推荐的补救方法),我们采用选择性推断的最新进展来构建具有良好可重复性前景的置信区间(CI),即使选择和估计是使用相同数据进行的。这些区间控制所选体素中未覆盖相关性的预期比例——错误覆盖率(FCR)。它们比标准区间更向零延伸,从而减弱了高度有偏的观察相关性所造成的印象。它们以自适应方式做到这一点,即当远离选择点时,它们与标准CI重合。我们用模拟补充现有的分析证明,表明所提出的区间在现实的社会神经科学问题中控制FCR。我们还提出了一个“置信校准图”,以便以清晰且可解释的方式报告这些区间。将所提出的方法应用于一项损失厌恶研究,我们证明在所采用的样本量和选择类型下,选择偏差相当大。最后,将选择性区间与当前推荐的数据拆分方法进行比较。我们发现我们的方法具有更大的功效且通常信息更丰富,因为没有数据被丢弃。区间的计算在随附的软件包中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验