Suppr超能文献

纳米腔交叉阵列芯片上的并行电化学生物传感

Nanocavity crossbar arrays for parallel electrochemical sensing on a chip.

机构信息

Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany. Current address: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom.

Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany.

出版信息

Beilstein J Nanotechnol. 2014 Jul 23;5:1137-43. doi: 10.3762/bjnano.5.124. eCollection 2014.

Abstract

We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on the wafer surface. At each intersection, the crossing bars are separated by a ca. 65 nm high nanocavity, which is stabilized by the surrounding passivation layer. During operation, perpendicular bar electrodes are biased to potentials above and below the redox potential of species under investigation, thus, enabling repeated subsequent reactions at the two electrodes. By this means, a redox cycling current is formed across the gap that can be measured externally. As the nanocavity devices feature a very high current amplification in redox cycling mode, individual sensing spots can be addressed in parallel, enabling high-throughput electrochemical imaging. This paper introduces the design of the device, discusses the fabrication process and demonstrates its capabilities in sequential and parallel data acquisition mode by using a hexacyanoferrate probe.

摘要

我们介绍了一种基于叉指电极结构的新型装置,用于高空间分辨率的氧化还原活性化合物的测绘。传感器阵列由两组 16 个平行带电极组成,这些电极垂直排列在晶圆表面上。在每个交点处,交叉棒由大约 65nm 高的纳米腔隔开,纳米腔由周围的钝化层稳定。在操作过程中,垂直条形电极被偏置到待研究物质的氧化还原电位以上和以下的电位,从而可以在两个电极上重复随后的反应。通过这种方式,在间隙中形成可以外部测量的氧化还原循环电流。由于纳米腔器件在氧化还原循环模式下具有非常高的电流放大率,因此可以并行寻址单个传感点,从而实现高通量电化学成像。本文介绍了该装置的设计,讨论了其制造工艺,并通过使用六氰合铁(III)探针演示了其在顺序和并行数据采集模式下的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f7c/4143123/e88bf97cf2f5/Beilstein_J_Nanotechnol-05-1137-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验