Departments of Psychiatry and.
Anatomy and Neurobiology and.
J Neurosci. 2014 Aug 27;34(35):11792-802. doi: 10.1523/JNEUROSCI.2355-14.2014.
Few other neurotransmitters are of as intense interest to neuropsychiatry and neurology as dopamine, yet existing techniques to monitor dopamine release leave an important spatiotemporal gap in our understanding. Electrochemistry and fluorescence imaging tools have been developed to fill the gap, but these methods have important limitations. We circumvent these limitations by introducing a dopamine-gated chloride channel into rat dorsal striatal medium spiny neurons, targets of strong dopamine innervation, thereby transforming dopamine from a slow transmitter into a fast transmitter and revealing new opportunities for studying moment-to-moment regulation of dopamine release. We demonstrate pharmacological and biophysical properties of the channel that make it suitable for fast, local dopamine measurements, and we demonstrate for the first time spontaneous and evoked responses to vesicular dopamine release in the dorsal striatum. Evoked dopamine currents were separated into a fast, monosynaptic component and a slower-rising and decaying disynaptic component mediated by nicotinic receptor activation. In summary, LGC-53 represents a dopamine biosensor with properties suitable for temporal separation of distinct dopamine signals in targets of dopamine innervation.
很少有其他神经递质像多巴胺那样引起神经精神医学和神经学的强烈兴趣,但现有的监测多巴胺释放的技术在我们的理解中留下了重要的时空差距。电化学和荧光成像工具已被开发出来以填补这一空白,但这些方法存在重要的局限性。我们通过将多巴胺门控氯离子通道引入大鼠背侧纹状体中间神经元来规避这些限制,这些神经元是多巴胺强烈支配的靶点,从而将多巴胺从慢递质转变为快递质,并为研究多巴胺释放的瞬间调节提供了新的机会。我们展示了该通道的药理学和生物物理学特性,使其适合快速、局部的多巴胺测量,并首次证明了背侧纹状体中囊泡多巴胺释放的自发和诱发反应。诱发的多巴胺电流被分为快速、单突触成分和较慢上升和衰减的双突触成分,由烟碱受体激活介导。总之,LGC-53 代表了一种多巴胺生物传感器,其特性适合于在多巴胺支配的靶点中分离不同的多巴胺信号。