Suppr超能文献

使用通道生物传感器研究多巴胺的快速相分离释放特性。

Fast phasic release properties of dopamine studied with a channel biosensor.

机构信息

Departments of Psychiatry and.

Anatomy and Neurobiology and.

出版信息

J Neurosci. 2014 Aug 27;34(35):11792-802. doi: 10.1523/JNEUROSCI.2355-14.2014.

Abstract

Few other neurotransmitters are of as intense interest to neuropsychiatry and neurology as dopamine, yet existing techniques to monitor dopamine release leave an important spatiotemporal gap in our understanding. Electrochemistry and fluorescence imaging tools have been developed to fill the gap, but these methods have important limitations. We circumvent these limitations by introducing a dopamine-gated chloride channel into rat dorsal striatal medium spiny neurons, targets of strong dopamine innervation, thereby transforming dopamine from a slow transmitter into a fast transmitter and revealing new opportunities for studying moment-to-moment regulation of dopamine release. We demonstrate pharmacological and biophysical properties of the channel that make it suitable for fast, local dopamine measurements, and we demonstrate for the first time spontaneous and evoked responses to vesicular dopamine release in the dorsal striatum. Evoked dopamine currents were separated into a fast, monosynaptic component and a slower-rising and decaying disynaptic component mediated by nicotinic receptor activation. In summary, LGC-53 represents a dopamine biosensor with properties suitable for temporal separation of distinct dopamine signals in targets of dopamine innervation.

摘要

很少有其他神经递质像多巴胺那样引起神经精神医学和神经学的强烈兴趣,但现有的监测多巴胺释放的技术在我们的理解中留下了重要的时空差距。电化学和荧光成像工具已被开发出来以填补这一空白,但这些方法存在重要的局限性。我们通过将多巴胺门控氯离子通道引入大鼠背侧纹状体中间神经元来规避这些限制,这些神经元是多巴胺强烈支配的靶点,从而将多巴胺从慢递质转变为快递质,并为研究多巴胺释放的瞬间调节提供了新的机会。我们展示了该通道的药理学和生物物理学特性,使其适合快速、局部的多巴胺测量,并首次证明了背侧纹状体中囊泡多巴胺释放的自发和诱发反应。诱发的多巴胺电流被分为快速、单突触成分和较慢上升和衰减的双突触成分,由烟碱受体激活介导。总之,LGC-53 代表了一种多巴胺生物传感器,其特性适合于在多巴胺支配的靶点中分离不同的多巴胺信号。

相似文献

1
Fast phasic release properties of dopamine studied with a channel biosensor.
J Neurosci. 2014 Aug 27;34(35):11792-802. doi: 10.1523/JNEUROSCI.2355-14.2014.
2
Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels.
J Neurochem. 2011 Sep;118(5):721-36. doi: 10.1111/j.1471-4159.2011.07358.x. Epub 2011 Aug 4.
4
Ligand-gated chloride channels are receptors for biogenic amines in C. elegans.
Science. 2009 Jul 3;325(5936):96-100. doi: 10.1126/science.1169243.
5
Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate.
J Neurosci. 2010 Jun 16;30(24):8229-33. doi: 10.1523/JNEUROSCI.1754-10.2010.
7
Nicotinic acetylcholine receptors interact with dopamine in induction of striatal long-term depression.
J Neurosci. 2002 Apr 1;22(7):2541-9. doi: 10.1523/JNEUROSCI.22-07-02541.2002.
9
Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale.
ACS Chem Neurosci. 2012 Dec 19;3(12):991-1001. doi: 10.1021/cn300130b. Epub 2012 Nov 8.

引用本文的文献

1
Nicotine-mediated therapy for Parkinson's disease in transgenic model.
Front Aging Neurosci. 2024 May 15;16:1358141. doi: 10.3389/fnagi.2024.1358141. eCollection 2024.
2
Mini-review: The Role of the Cerebellum in Visuomotor Adaptation.
Cerebellum. 2022 Apr;21(2):306-313. doi: 10.1007/s12311-021-01281-4. Epub 2021 Jun 2.
3
Spatial and temporal scales of dopamine transmission.
Nat Rev Neurosci. 2021 Jun;22(6):345-358. doi: 10.1038/s41583-021-00455-7. Epub 2021 Apr 9.
5
Mechanisms and regulation of dopamine release.
Curr Opin Neurobiol. 2019 Aug;57:46-53. doi: 10.1016/j.conb.2019.01.001. Epub 2019 Feb 12.
7
Antagonistic effect of dopamine structural analogues on human GABAρ1 receptor.
Sci Rep. 2017 Dec 12;7(1):17385. doi: 10.1038/s41598-017-17530-8.
8
Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens.
J Neurosci. 2017 Feb 22;37(8):2086-2096. doi: 10.1523/JNEUROSCI.3064-16.2017. Epub 2017 Jan 23.
10
Striatal dopamine neurotransmission: regulation of release and uptake.
Basal Ganglia. 2016 Aug;6(3):123-148. doi: 10.1016/j.baga.2016.02.001.

本文引用的文献

1
Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice.
J Physiol. 2014 Aug 15;592(16):3559-76. doi: 10.1113/jphysiol.2014.271825. Epub 2014 Jun 27.
2
Striatal cholinergic interneurons Drive GABA release from dopamine terminals.
Neuron. 2014 Apr 2;82(1):63-70. doi: 10.1016/j.neuron.2014.01.023. Epub 2014 Mar 6.
4
Spontaneous inhibitory synaptic currents mediated by a G protein-coupled receptor.
Neuron. 2013 Jun 5;78(5):807-12. doi: 10.1016/j.neuron.2013.04.013.
5
Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):870-5. doi: 10.1073/pnas.1213569110. Epub 2012 Dec 31.
7
Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons.
Neuron. 2012 Jul 12;75(1):58-64. doi: 10.1016/j.neuron.2012.04.038.
8
Ultrastructure of synapses in the mammalian brain.
Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a005587. doi: 10.1101/cshperspect.a005587.
10
Thalamic gating of corticostriatal signaling by cholinergic interneurons.
Neuron. 2010 Jul 29;67(2):294-307. doi: 10.1016/j.neuron.2010.06.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验