Suppr超能文献

肾脏磷代谢的遗传性疾病。

Genetic diseases of renal phosphate handling.

作者信息

Wagner Carsten A, Rubio-Aliaga Isabel, Biber Jürg, Hernando Nati

机构信息

Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.

出版信息

Nephrol Dial Transplant. 2014 Sep;29 Suppl 4:iv45-54. doi: 10.1093/ndt/gfu217.

Abstract

UNLABELLED

Renal control of systemic phosphate homeostasis is critical as evident from inborn and acquired diseases causing renal phosphate wasting. At least three transport proteins are responsible for renal phosphate reabsorption: NAPI-IIa (SLC34A1), NAPI-IIc (SLC34A3) and PIT-2 (SLC20A2). These transporters are highly regulated by various cellular mechanisms and factors including acid-base status, electrolyte balance and hormones such as dopamine, glucocorticoids, growth factors, vitamin D3, parathyroid hormone and fibroblast growth factor 23 (FGF23). Whether renal phosphate wasting is caused by inactivating mutations in the NAPI-IIa transporter is controversial. Mutations in the NAPI-IIc transporter cause hereditary hypophosphatemic rickets with hypercalciuria. Besides the primary inherited defects, there are also inherited defects in major regulators of phosphate homeostasis that lead to alterations in phosphate handling. Autosomal dominant hypophosphatemic rickets is due to FGF23 mutations leading to resistance against its own degradation. Similarly, inactivating mutations in the PHEX gene, which causes FGF23 inactivation, cause X-linked hypophosphatemia due to renal phosphate losses. In contrast, mutations in galactosamine:polypeptide N-acetyl-galactosaminyltransferase, responsible for O-glycosylation of FGF23, or in klotho, a cofactor for FGF23 signalling result in hyperphosphatemia. Acquired syndromes of renal phosphate wasting, hypophosphatemia and osteomalacia (tumour-associated osteomalacia) can be due to the excessive synthesis or release of phosphaturic factors (FGF23, FGF-7, MEPE and sFRP4) from mesenchymal tumours.

KEYWORDS

bone, FGF23, kidney, phosphate, PTH.

摘要

未标注

肾脏对全身磷酸盐稳态的调控至关重要,这在导致肾性磷酸盐流失的先天性和后天性疾病中表现得很明显。至少有三种转运蛋白负责肾脏磷酸盐重吸收:NAPI-IIa(SLC34A1)、NAPI-IIc(SLC34A3)和PIT-2(SLC20A2)。这些转运蛋白受到多种细胞机制和因素的高度调控,包括酸碱状态、电解质平衡以及多巴胺、糖皮质激素、生长因子、维生素D3、甲状旁腺激素和成纤维细胞生长因子23(FGF23)等激素。肾性磷酸盐流失是否由NAPI-IIa转运蛋白的失活突变引起存在争议。NAPI-IIc转运蛋白的突变会导致伴有高钙尿症的遗传性低磷性佝偻病。除了原发性遗传缺陷外,磷酸盐稳态的主要调节因子也存在遗传缺陷,从而导致磷酸盐处理的改变。常染色体显性低磷性佝偻病是由于FGF23突变导致对其自身降解产生抗性。同样,PHEX基因的失活突变会导致FGF23失活,由于肾性磷酸盐流失而导致X连锁低磷血症。相反,负责FGF23 O-糖基化的半乳糖胺:多肽N-乙酰半乳糖胺基转移酶或FGF23信号传导的辅助因子klotho中的突变会导致高磷血症。获得性肾性磷酸盐流失、低磷血症和骨软化症综合征(肿瘤相关性骨软化症)可能是由于间充质肿瘤过度合成或释放排磷因子(FGF23、FGF-7、MEPE和sFRP4)所致。

关键词

骨骼、FGF23、肾脏、磷酸盐、甲状旁腺激素

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验