Suppr超能文献

从拔牙窝中分离间充质干/祖细胞。

Mesenchymal stem/progenitor cell isolation from tooth extraction sockets.

作者信息

Nakajima R, Ono M, Hara E S, Oida Y, Shinkawa S, Pham H T, Akiyama K, Sonoyama W, Maekawa K, Kuboki T

机构信息

Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

出版信息

J Dent Res. 2014 Nov;93(11):1133-40. doi: 10.1177/0022034514549377. Epub 2014 Aug 28.

Abstract

Bone marrow-derived mesenchymal stem/progenitor cells (BMSCs) are commonly used in regeneration therapy. The current primary source of BMSCs is the iliac crest; however, the procedure is associated with various burdens on the patient, including the risk of pain and infection. Hence, the possibility to collect BMSCs from other, more accessible, sources would be an attractive approach. It is well known that stem cells migrate from surrounding tissues and play important roles in wound healing. We thus hypothesized that stem/progenitor cells could be isolated from granulation tissue in the dental socket, and we subsequently collected granulation tissue from dog dental socket 3 d after tooth extraction. After enzyme digestion of the collected tissue, the cells forming colonies constituted the dental socket-derived stem/progenitor cells (dDSCs). Next, dDSCs were compared with dog BMSCs (dBMSCs) for phenotype characterization. A flow cytometric analysis showed that dDSCs were positive for CD44, CD90, and CD271 but negative for CD34 and CD45, similar to dBMSCs. dDSCs also exhibited osteogenic, adipogenic, and chondrogenic differentiation ability, similar to dBMSCs, with a higher capacity for colony formation, proliferation, and motility than dBMSCs. In addition, an in vivo ectopic bone formation assay showed that dDSCs and dBMSCs both induced hard tissue formation, although only dDSCs formed a fibrous tissue-like structure connected to the newly formed bone. Finally, we tested the ability of dDSCs to regenerate periodontal tissue in a one-wall defect model. The defects in the dDSC-transplanted group (β-TCP/PGA/dDSCs) were regenerated with cementum-like and periodontal ligament-like tissues and alveolar bone, whereas only bony tissue was observed in the control group (β-TCP/PGA). In conclusion, we identified and characterized a population of stem/progenitor cells in granulation tissue obtained from the dental socket that exhibited several characteristics similar to those of BMSCs. Dental sockets could therefore be a novel source for isolating stem/progenitor cells from bone.

摘要

骨髓间充质干/祖细胞(BMSCs)常用于再生治疗。目前BMSCs的主要来源是髂嵴;然而,该操作会给患者带来各种负担,包括疼痛和感染风险。因此,从其他更容易获取的来源收集BMSCs的可能性将是一种有吸引力的方法。众所周知,干细胞从周围组织迁移并在伤口愈合中发挥重要作用。因此,我们假设可以从拔牙窝的肉芽组织中分离出干/祖细胞,随后在拔牙后3天从犬拔牙窝收集肉芽组织。对收集的组织进行酶消化后,形成集落的细胞构成了拔牙窝来源的干/祖细胞(dDSCs)。接下来,将dDSCs与犬BMSCs(dBMSCs)进行表型特征比较。流式细胞术分析表明,dDSCs与dBMSCs相似,CD44、CD90和CD271呈阳性,但CD34和CD45呈阴性。dDSCs也表现出与dBMSCs相似的成骨、成脂和成软骨分化能力,其集落形成、增殖和迁移能力高于dBMSCs。此外,体内异位骨形成试验表明,dDSCs和dBMSCs均能诱导硬组织形成,尽管只有dDSCs形成了与新形成骨相连的纤维组织样结构。最后,我们在单壁缺损模型中测试了dDSCs再生牙周组织的能力。dDSC移植组(β-TCP/PGA/dDSCs)的缺损由类牙骨质和类牙周韧带组织以及牙槽骨再生,而对照组(β-TCP/PGA)仅观察到骨组织。总之,我们鉴定并表征了从拔牙窝获得的肉芽组织中的一群干/祖细胞,其表现出与BMSCs相似的几种特征。因此,拔牙窝可能是从骨中分离干/祖细胞的新来源。

相似文献

1
Mesenchymal stem/progenitor cell isolation from tooth extraction sockets.
J Dent Res. 2014 Nov;93(11):1133-40. doi: 10.1177/0022034514549377. Epub 2014 Aug 28.
2
Isolating stromal stem cells from periodontal granulation tissues.
Clin Oral Investig. 2012 Aug;16(4):1171-80. doi: 10.1007/s00784-011-0600-5. Epub 2011 Aug 12.
3
4
Characterization of progenitor/stem cell population from human dental socket and their multidifferentiation potential.
Cell Tissue Bank. 2020 Mar;21(1):31-46. doi: 10.1007/s10561-019-09794-3. Epub 2019 Dec 5.
5
Human dental pulp stem cells derived from different cryopreservation methods of human dental pulp tissues of diseased teeth.
J Oral Pathol Med. 2011 Nov;40(10):793-800. doi: 10.1111/j.1600-0714.2011.01040.x. Epub 2011 Apr 23.
7
The In Vitro and In Vivo Osteogenic Capability of the Extraction Socket-Derived Early Healing Tissue.
J Periodontol. 2016 Sep;87(9):1057-66. doi: 10.1902/jop.2016.160078. Epub 2016 Apr 25.

引用本文的文献

1
Early cellular events of osteomucosal healing in the tooth extraction socket.
PLoS One. 2025 Aug 14;20(8):e0328459. doi: 10.1371/journal.pone.0328459. eCollection 2025.
2
Stem cell therapy for regenerating periodontal bony defects: A narrative review.
J Adv Periodontol Implant Dent. 2025 Mar 3;17(1):1-14. doi: 10.34172/japid.025.3749. eCollection 2025 Mar.
3
Interaction between immuno-stem dual lineages in jaw bone formation and injury repair.
Front Cell Dev Biol. 2024 Mar 6;12:1359295. doi: 10.3389/fcell.2024.1359295. eCollection 2024.
4
Effects of HMGB1/TLR4 on secretion IL-10 and VEGF in human jaw bone-marrow mesenchymal stem cells.
J Appl Oral Sci. 2024 Feb 12;32:e20230304. doi: 10.1590/1678-7757-2023-0304. eCollection 2024.
6
Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering.
Stem Cell Res Ther. 2023 Mar 16;14(1):39. doi: 10.1186/s13287-023-03265-z.
7
Oral tissues regeneration using intraoral mesenchymal stem cells.
J Clin Exp Dent. 2021 Mar 1;13(3):e268-e277. doi: 10.4317/jced.56810. eCollection 2021 Mar.
9
Immunomodulatory Properties of Stem Cells in Periodontitis: Current Status and Future Prospective.
Stem Cells Int. 2020 Jul 8;2020:9836518. doi: 10.1155/2020/9836518. eCollection 2020.
10
Role of p53 deficiency in socket healing after tooth extractions.
J Mol Histol. 2020 Feb;51(1):55-65. doi: 10.1007/s10735-020-09856-x. Epub 2020 Jan 31.

本文引用的文献

2
miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.
PLoS One. 2013 Dec 30;8(12):e83545. doi: 10.1371/journal.pone.0083545. eCollection 2013.
4
How can ethics relate to science? The case of stem cell research.
Eur J Hum Genet. 2013 Jun;21(6):591-5. doi: 10.1038/ejhg.2012.232. Epub 2012 Nov 14.
5
Novel chondrogenic and chondroprotective effects of the natural compound harmine.
Biochimie. 2013 Feb;95(2):374-81. doi: 10.1016/j.biochi.2012.10.016. Epub 2012 Oct 29.
6
In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow.
Odontology. 2013 Jul;101(2):121-32. doi: 10.1007/s10266-012-0075-0. Epub 2012 Jul 7.
7
Universal patterns of stem cell fate in cycling adult tissues.
Development. 2011 Aug;138(15):3103-11. doi: 10.1242/dev.060103.
8
WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity.
J Bone Miner Res. 2011 Jan;26(1):193-208. doi: 10.1002/jbmr.205.
10
Mesenchymal stem cell homing: the devil is in the details.
Cell Stem Cell. 2009 Mar 6;4(3):206-16. doi: 10.1016/j.stem.2009.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验