Suppr超能文献

丙型肝炎病毒NS3/4A蛋白酶V36M、R155K、V36M+R155K、T54A和A156T突变导致那拉普瑞韦耐药性分子机制的计算研究

Computational study on the molecular mechanisms of drug resistance of Narlaprevir due to V36M, R155K, V36M+R155K, T54A, and A156T mutations of HCV NS3/4A protease.

作者信息

Wang Huiqun, Geng Lingling, Chen Bo-Zhen, Ji Mingjuan

机构信息

School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China.

出版信息

Biochem Cell Biol. 2014 Oct;92(5):357-69. doi: 10.1139/bcb-2014-0039. Epub 2014 Jul 23.

Abstract

Narlaprevir is a novel NS3/4A protease inhibitor of hepatitis C virus (HCV), and it has been tested in a phase II clinical trial recently. However, distinct drug-resistance of Narlaprevir has been discovered. In our study, the molecular mechanisms of drug-resistance of Narlaprevir due to the mutations V36M, R155K, V36M+R155K, T54A, and A156T of NS3/4A protease have been investigated by molecular dynamics (MD) simulations, free energy calculations, and free energy decomposition analysis. The predicted binding free energies of Narlaprevir towards the wild-type and five mutants show that the mutations V36M, R155K, and T54A lead to low-level drug resistance and the mutations V36M+R155K and A156T lead to high-level drug resistance, which is consistent with the experimental data. The analysis of the individual energy terms indicates that the van der Waals contribution is important for distinguishing the binding affinities of these six complexes. These findings again show that the combination of different molecular modeling techniques is an efficient way to interpret the molecular mechanism of drug-resistance. Our work mainly elaborates the molecular mechanism of drug-resistance of Narlaprevir and further provides valuable information for developing novel, safer, and more potent HCV antiviral drugs in the near future.

摘要

那拉普韦是一种新型丙型肝炎病毒(HCV)NS3/4A蛋白酶抑制剂,最近已在一项II期临床试验中进行了测试。然而,已发现那拉普韦存在明显的耐药性。在我们的研究中,通过分子动力学(MD)模拟、自由能计算和自由能分解分析,研究了NS3/4A蛋白酶的V36M、R155K、V36M + R155K、T54A和A156T突变导致那拉普韦耐药的分子机制。那拉普韦对野生型和五个突变体的预测结合自由能表明,V36M、R155K和T54A突变导致低水平耐药,而V36M + R155K和A156T突变导致高水平耐药,这与实验数据一致。对各个能量项的分析表明,范德华力贡献对于区分这六种复合物的结合亲和力很重要。这些发现再次表明,不同分子建模技术的结合是解释耐药分子机制的有效方法。我们的工作主要阐述了那拉普韦耐药的分子机制,并进一步为在不久的将来开发新型、更安全、更有效的HCV抗病毒药物提供了有价值的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验