Suppr超能文献

功能性脑网络的图谱分析:转化神经科学中的实际问题

Graph analysis of functional brain networks: practical issues in translational neuroscience.

作者信息

De Vico Fallani Fabrizio, Richiardi Jonas, Chavez Mario, Achard Sophie

机构信息

INRIA Paris-Rocquencourt, ARAMIS team, Paris, France CNRS, UMR-7225, Paris, France INSERM, U1227, Paris, France Institut du Cerveau et de la Moelle épinière, Paris, France Univ. Sorbonne UPMC, UMR S1127, Paris, France

Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA Laboratory for Neuroimaging and Cognition, Department of Neurology and Department of Neurosciences, University of Geneva, Geneva, Switzerland.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0521.

Abstract

The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.

摘要

大脑可被视为一个网络

一个相互连接的系统,其中节点或单元代表不同的专门区域,而链接或连接代表通信路径。从功能角度来看,通信是由不同脑区活动之间的时间依赖性编码的。在过去十年中,将大脑抽象表示为图形的方式使得功能性脑网络得以可视化,并以紧凑且客观的方式描述其非平凡的拓扑特性。如今,在转化神经科学中使用图形分析对于根据功能性脑网络的异常重构来量化脑功能障碍已变得至关重要。尽管其影响显著,但对功能性脑网络进行图形分析并非一个可以盲目应用于脑信号的简单工具箱。一方面,它需要掌握处理输入脑信号并提取功能网络特性的整个流程中所有方法步骤的专业知识。另一方面,需要了解所研究的神经现象才能进行生理相关分析。本综述的目的是提供实际指导,以理解脑网络分析并纠正适得其反的态度。

相似文献

1
Graph analysis of functional brain networks: practical issues in translational neuroscience.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0521.
2
Graph-to-signal transformation based classification of functional connectivity brain networks.
PLoS One. 2019 Aug 22;14(8):e0212470. doi: 10.1371/journal.pone.0212470. eCollection 2019.
3
Functional brain networks: great expectations, hard times and the big leap forward.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0525.
4
The relation between structural and functional connectivity patterns in complex brain networks.
Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.
5
Contributions and challenges for network models in cognitive neuroscience.
Nat Neurosci. 2014 May;17(5):652-60. doi: 10.1038/nn.3690. Epub 2014 Mar 30.
6
Graph Theory at the Service of Electroencephalograms.
Brain Connect. 2017 Apr;7(3):137-151. doi: 10.1089/brain.2016.0426. Epub 2017 Mar 29.
7
The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
J Neurosci. 2016 Nov 30;36(48):12083-12094. doi: 10.1523/JNEUROSCI.2965-15.2016.
8
The Brain Connectivity Workshops: moving the frontiers of computational systems neuroscience.
Neuroimage. 2008 Aug 1;42(1):1-9. doi: 10.1016/j.neuroimage.2008.04.167. Epub 2008 Apr 20.
9
Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):547-556. doi: 10.1109/TNSRE.2016.2597961. Epub 2016 Sep 9.
10
Complex network theory and the brain.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0520.

引用本文的文献

1
Introduction to correlation networks: Interdisciplinary approaches beyond thresholding.
Phys Rep. 2025 Aug 21;1136:1-39. doi: 10.1016/j.physrep.2025.06.002. Epub 2025 Jun 30.
2
Graph theory-based analysis of functional connectivity changes in brain networks underlying cognitive fatigue: An EEG study.
PLoS One. 2025 Aug 4;20(8):e0329212. doi: 10.1371/journal.pone.0329212. eCollection 2025.
3
Baseline-dependent network reactivity to visual input in children with autism spectrum disorder: a magnetoencephalography study.
Front Psychiatry. 2025 Jul 16;16:1600973. doi: 10.3389/fpsyt.2025.1600973. eCollection 2025.
4
Multilayer network analysis across cortical depths in 7-T resting-state fMRI.
Netw Neurosci. 2025 Apr 30;9(2):475-503. doi: 10.1162/netn_a_00436. eCollection 2025.
7
Altered Brain-Behavior Association During Resting State is a Potential Psychosis Risk Marker.
Adv Sci (Weinh). 2025 Jul;12(26):e2405700. doi: 10.1002/advs.202405700. Epub 2025 Apr 2.
8
Proficiency in motor imagery is linked to the lateralization of focused ERD patterns and beta PDC.
J Neuroeng Rehabil. 2025 Feb 20;22(1):30. doi: 10.1186/s12984-025-01571-6.

本文引用的文献

1
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
Neuroimage. 2014 Jul 15;95(100):287-304. doi: 10.1016/j.neuroimage.2014.03.012. Epub 2014 Mar 21.
2
Nonparametric resampling of random walks for spectral network clustering.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012802. doi: 10.1103/PhysRevE.89.012802. Epub 2014 Jan 9.
3
Bootstrapping under constraint for the assessment of group behavior in human contact networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052812. doi: 10.1103/PhysRevE.88.052812. Epub 2013 Nov 25.
4
Defining nodes in complex brain networks.
Front Comput Neurosci. 2013 Nov 22;7:169. doi: 10.3389/fncom.2013.00169.
5
Functional connectivity and graph theory in preclinical Alzheimer's disease.
Neurobiol Aging. 2014 Apr;35(4):757-68. doi: 10.1016/j.neurobiolaging.2013.10.081. Epub 2013 Oct 18.
6
Structural and functional brain networks: from connections to cognition.
Science. 2013 Nov 1;342(6158):1238411. doi: 10.1126/science.1238411.
7
Integrated strategy for improving functional connectivity mapping using multiecho fMRI.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16187-92. doi: 10.1073/pnas.1301725110. Epub 2013 Sep 13.
8
Methods to detect, characterize, and remove motion artifact in resting state fMRI.
Neuroimage. 2014 Jan 1;84:320-41. doi: 10.1016/j.neuroimage.2013.08.048. Epub 2013 Aug 29.
9
Evidence for hubs in human functional brain networks.
Neuron. 2013 Aug 21;79(4):798-813. doi: 10.1016/j.neuron.2013.07.035.
10
Influence of choice of null network on small-world parameters of structural correlation networks.
PLoS One. 2013 Jun 28;8(6):e67354. doi: 10.1371/journal.pone.0067354. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验