De Vico Fallani Fabrizio, Richiardi Jonas, Chavez Mario, Achard Sophie
INRIA Paris-Rocquencourt, ARAMIS team, Paris, France CNRS, UMR-7225, Paris, France INSERM, U1227, Paris, France Institut du Cerveau et de la Moelle épinière, Paris, France Univ. Sorbonne UPMC, UMR S1127, Paris, France
Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA Laboratory for Neuroimaging and Cognition, Department of Neurology and Department of Neurosciences, University of Geneva, Geneva, Switzerland.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0521.
The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.
一个相互连接的系统,其中节点或单元代表不同的专门区域,而链接或连接代表通信路径。从功能角度来看,通信是由不同脑区活动之间的时间依赖性编码的。在过去十年中,将大脑抽象表示为图形的方式使得功能性脑网络得以可视化,并以紧凑且客观的方式描述其非平凡的拓扑特性。如今,在转化神经科学中使用图形分析对于根据功能性脑网络的异常重构来量化脑功能障碍已变得至关重要。尽管其影响显著,但对功能性脑网络进行图形分析并非一个可以盲目应用于脑信号的简单工具箱。一方面,它需要掌握处理输入脑信号并提取功能网络特性的整个流程中所有方法步骤的专业知识。另一方面,需要了解所研究的神经现象才能进行生理相关分析。本综述的目的是提供实际指导,以理解脑网络分析并纠正适得其反的态度。