Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY 40546-0312, USA.
Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY 40546-0312, USA.
Trends Biotechnol. 2014 Oct;32(10):529-37. doi: 10.1016/j.tibtech.2014.08.002. Epub 2014 Sep 2.
Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes.
浮游动物捕食者、细菌和病毒介导的多营养层次微生物环相互作用驱动着生态和农业生物技术过程,如生物修复、废水处理、植物生长促进和生态系统功能。这些微生物相互作用在执行生物技术和生态系统过程方面在多大程度上依赖于具体情境,在很大程度上仍未得到研究。理论驱动的研究可以增进对生态进化过程的理解,这些过程是微生物相互作用模式和功能的基础,有助于成功开发基于微生物的生物技术,以将其应用于实际。这也是一个很好的途径,可以检验生态学理论在管理不断变化的微生物生境、多营养层次相互作用以及由气候变化和土地利用变化导致的微生物多样性丧失时代的各种微生物资源方面的有效性或局限性。