Abbasi Bilal, Craig Walter
Department of Mathematics and Statistics , McMaster University , Hamilton, Ontario L8S 4K1, Canada.
Department of Mathematics and Statistics , McMaster University , Hamilton, Ontario L8S 4K1, Canada ; The Fields Institute , 222 College Street, Toronto, Ontario M5T 3J1, Canada.
Proc Math Phys Eng Sci. 2014 Sep 8;470(2169):20140361. doi: 10.1098/rspa.2014.0361.
The propagator (,)(,) for the wave equation in a given space-time takes initial data ((),()) on a Cauchy surface {(,) : =} and evaluates the solution ((,),∂ (,)) at other times . The Friedmann-Robertson-Walker space-times are defined for ,>0, whereas for →0, there is a metric singularity. There is a spherical means representation for the general solution of the wave equation with the Friedmann-Robertson-Walker background metric in the three spatial dimensional cases of curvature =0 and =-1 given by S. Klainerman and P. Sarnak. We derive from the expression of their representation three results about the wave propagator for the Cauchy problem in these space-times. First, we give an elementary proof of the sharp rate of time decay of solutions with compactly supported data. Second, we observe that the sharp Huygens principle is not satisfied by solutions, unlike in the case of three-dimensional Minkowski space-time (the usual Huygens principle of finite propagation speed is satisfied, of course). Third, we show that for 0<< the limit, [Formula: see text] exists, it is independent of (), and for all reasonable initial data (), it gives rise to a well-defined solution for all >0 emanating from the space-time singularity at =0. Under reflection →-, the Friedmann-Robertson-Walker metric gives a space-time metric for <0 with a singular future at =0, and the same solution formulae hold. We thus have constructed solutions (,) of the wave equation in Friedmann-Robertson-Walker space-times which exist for all [Formula: see text] and [Formula: see text], where in conformally regularized coordinates, these solutions are continuous through the singularity =0 of space-time, taking on specified data (0,⋅)=(⋅) at the singular time.
给定时空下波动方程的传播子(U(t,x;t_0,x_0))在柯西曲面({ (x,t) , : , t = t_0 })上取初始数据((\varphi(x),\pi(x))),并在其他时刻(t)求出解((u(t,x),\partial_t u(t,x)))。弗里德曼 - 罗伯逊 - 沃克时空是为(t > 0)定义的,而当(t \to 0)时,存在度规奇点。S. 克莱纳曼和P. 萨纳克给出了在曲率(k = 0)和(k = -1)的三维空间情形下,具有弗里德曼 - 罗伯逊 - 沃克背景度规的波动方程通解的球平均表示。我们从他们表示式的表达式中得出关于这些时空下柯西问题波动传播子的三个结果。第一,我们给出了具有紧支集数据的解的时间衰减尖锐速率的一个初等证明。第二,我们观察到解不满足尖锐惠更斯原理,这与三维闵可夫斯基时空的情况不同(当然,满足通常的有限传播速度的惠更斯原理)。第三,我们表明对于(0 < \epsilon < 1),极限(\lim_{t \to 0^+} t^{1 - \epsilon} u(t,x))存在,它与(\varphi(x))无关,并且对于所有合理的初始数据(\varphi(x)),它为所有(t > 0)产生一个从(t = 0)处的时空奇点发出的定义良好的解。在反射(t \to -t)下,弗里德曼 - 罗伯逊 - 沃克度规给出了(t < 0)时的时空度规,在(t = 0)处有一个奇异未来,并且相同的解公式成立。因此,我们构造了弗里德曼 - 罗伯逊 - 沃克时空下波动方程的解(u(t,x)),它对所有(t \in \mathbb{R})和(x \in \mathbb{R}^3)都存在,其中在共形正则化坐标中,这些解在时空奇点(t = 0)处连续,在奇异时刻取指定数据(u(0,\cdot) = \varphi(\cdot))。