Gold W A, Lacina T A, Cantrill L C, Christodoulou John
NSW Centre for Rett Syndrome Research, Western Sydney Genetics Program, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.
J Mol Med (Berl). 2015 Jan;93(1):63-72. doi: 10.1007/s00109-014-1202-x. Epub 2014 Sep 12.
Rett syndrome (RTT) is a severe neurodevelopmental disorder, predominantly caused by loss of function mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Despite the genetic cause being known in the majority of cases, the pathophysiology of the neurological phenotype of RTT is largely unknown. Tubulin and the microtubule network play an essential role in neuronal function whereby the acetylation state of microtubules dictates the efficiency of neuronal migration and differentiation, synaptic targeting and molecular motor trafficking of mRNA, high-energy mitochondria and brain-derived neurotrophic factor (BDNF)-containing vesicles. Recent reports have shown perturbations in tubulin and microtubule dynamics in MeCP2-deficient cells, suggesting a link between the aberrations of these cellular entities and the neurobiology of RTT. We have interrogated the functional state of the microtubule network in fibroblasts derived from two patients with RTT as well as cortical neurons from a RTT mouse model and observed a reduction in acetylated α-tubulin and an increase in the tubulin-specific deacetylase, histone deacetylase 6 (HDAC6). Furthermore, we show that inhibition of HDAC6 by Tubastatin A can restore tubulin acetylation levels. We also demonstrate microtubule instability in the RTT patient fibroblasts in response to nocodazole, which is progressively ameliorated in a mutation-dependent manner by Tubastatin A. We conclude that Tubastatin A is capable of counteracting the microtubule defects observed in MeCP2-deficient cells, which could in turn lead to the restoration of molecular trafficking along the microtubules and thus could be a potentially new therapeutic option for RTT.
Cells from MeCP2-deficient cells show reduced levels of acetylated α-tubulin. Cells from two patients and a RTT mouse model have increased levels of HDAC6 but not sirtuin 2 (SIRT2). Inhibition of HDAC6 by Tubastatin A increases the in vitro acetylation of α-tubulin. Inhibition of HDAC6 by Tubastatin A does not increase MECP2 expression. Cells from two patients show microtubule instability, which is ameliorated by Tubastatin A.
雷特综合征(RTT)是一种严重的神经发育障碍,主要由X连锁甲基化CpG结合蛋白2(MECP2)基因的功能丧失突变引起。尽管大多数病例的遗传病因已知,但RTT神经表型的病理生理学在很大程度上尚不清楚。微管蛋白和微管网络在神经元功能中起重要作用,微管的乙酰化状态决定神经元迁移和分化、突触靶向以及mRNA、高能线粒体和含脑源性神经营养因子(BDNF)囊泡的分子运动运输的效率。最近的报告显示,MeCP2缺陷细胞中微管蛋白和微管动力学存在扰动,表明这些细胞实体的异常与RTT的神经生物学之间存在联系。我们研究了两名RTT患者来源的成纤维细胞以及RTT小鼠模型的皮质神经元中微管网络的功能状态,观察到乙酰化α-微管蛋白减少,微管蛋白特异性脱乙酰酶组蛋白脱乙酰酶6(HDAC6)增加。此外,我们表明,Tubastatin A抑制HDAC6可以恢复微管蛋白乙酰化水平。我们还证明,RTT患者成纤维细胞中微管对诺考达唑有不稳定性,而Tubastatin A以突变依赖的方式逐渐改善这种不稳定性。我们得出结论,Tubastatin A能够抵消MeCP2缺陷细胞中观察到的微管缺陷,这反过来可能导致沿微管的分子运输恢复,因此可能是RTT潜在的新治疗选择。
MeCP2缺陷细胞中的细胞显示乙酰化α-微管蛋白水平降低。两名患者和一个RTT小鼠模型的细胞中HDAC6水平升高,但沉默调节蛋白2(SIRT2)水平未升高。Tubastatin A抑制HDAC6可增加α-微管蛋白的体外乙酰化。Tubastatin A抑制HDAC6不会增加MECP2表达。两名患者的细胞显示微管不稳定性,Tubastatin A可改善这种不稳定性。