Suppr超能文献

肌电图信号分解中的误差降低

Error reduction in EMG signal decomposition.

作者信息

Kline Joshua C, De Luca Carlo J

机构信息

NeuroMuscular Research Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts;

NeuroMuscular Research Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts; Department of Neurology, Boston University, Boston, Massachusetts; Department of Physical Therapy, Boston University, Boston, Massachusetts; and Delsys, Natick, Massachusetts

出版信息

J Neurophysiol. 2014 Dec 1;112(11):2718-28. doi: 10.1152/jn.00724.2013. Epub 2014 Sep 10.

Abstract

Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.

摘要

将肌电图(EMG)信号分解为组成动作电位,并在存在环境噪声的情况下识别每个运动单位的单个放电实例,无论是手动进行还是使用自动算法,本质上都是概率性过程。因此,它们容易出错。我们通过分析1061个运动单位动作电位序列(MUAPTs)来对这些误差进行分类和减少,这些序列是通过分解人类自愿收缩期间记录的表面肌电图(sEMG)信号获得的。分解误差分为两大类:位置误差,代表每个运动单位放电实例的时间定位中的变异性;识别误差,包括错误检测或遗漏的放电实例。为了减轻这些误差,我们开发了一种误差减少算法,该算法结合多个分解估计来确定运动单位放电实例的更可能估计,且误差更少。该算法的性能取决于在给定精度水平以上获得的MUAPTs产量与执行分解所需时间之间的权衡。当应用于从真实MUAPTs合成的一组sEMG信号时,识别误差平均降低了1.78%,精度提高到97.0%,位置误差平均降低了1.66毫秒。本研究中的误差减少算法不限于任何特定的分解策略。相反,我们建议将其用于其他分解方法,特别是在分析精确的运动单位放电实例时,如在测量同步时出现的情况。

相似文献

1
Error reduction in EMG signal decomposition.
J Neurophysiol. 2014 Dec 1;112(11):2718-28. doi: 10.1152/jn.00724.2013. Epub 2014 Sep 10.
3
Decomposition of surface EMG signals from cyclic dynamic contractions.
J Neurophysiol. 2015 Mar 15;113(6):1941-51. doi: 10.1152/jn.00555.2014. Epub 2014 Dec 24.
4
Enhanced Dynamic Surface EMG Decomposition Using the Non-Negative Matrix Factorization and Three-Dimensional Motor Unit Localization.
IEEE Trans Biomed Eng. 2024 Feb;71(2):596-606. doi: 10.1109/TBME.2023.3309969. Epub 2024 Jan 19.
5
Decomposition and quantitative analysis of clinical electromyographic signals.
Med Eng Phys. 1999 Jul-Sep;21(6-7):389-404. doi: 10.1016/s1350-4533(99)00064-8.
6
High-yield decomposition of surface EMG signals.
Clin Neurophysiol. 2010 Oct;121(10):1602-15. doi: 10.1016/j.clinph.2009.11.092. Epub 2010 Apr 28.
7
Surface EMG signal decomposition using empirically sustainable biosignal separation principles.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4986-9. doi: 10.1109/IEMBS.2009.5334090.
9
EMG signal decomposition using motor unit potential train validity.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):265-74. doi: 10.1109/TNSRE.2012.2218287. Epub 2012 Sep 27.
10
Unlocking the full potential of high-density surface EMG: novel non-invasive high-yield motor unit decomposition.
J Physiol. 2025 Apr;603(8):2281-2300. doi: 10.1113/JP287913. Epub 2025 Mar 17.

引用本文的文献

2
Differential impact on motor unit characteristics across severities of adult spinal muscular atrophy.
Ann Clin Transl Neurol. 2023 Dec;10(12):2208-2222. doi: 10.1002/acn3.51906. Epub 2023 Sep 21.
5
Fatigue-related modulation of low-frequency common drive to motor units.
Eur J Appl Physiol. 2020 Jun;120(6):1305-1317. doi: 10.1007/s00421-020-04363-z. Epub 2020 Apr 15.
6
High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.
PLoS One. 2018 Apr 9;13(4):e0195051. doi: 10.1371/journal.pone.0195051. eCollection 2018.
7
Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors.
Front Hum Neurosci. 2017 Nov 24;11:569. doi: 10.3389/fnhum.2017.00569. eCollection 2017.
8
Adaptations in antagonist co-activation: Role in the repeated-bout effect.
PLoS One. 2017 Dec 7;12(12):e0189323. doi: 10.1371/journal.pone.0189323. eCollection 2017.
10
Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.
J Neurophysiol. 2016 Jan 1;115(1):178-92. doi: 10.1152/jn.00452.2015. Epub 2015 Oct 21.

本文引用的文献

1
Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings.
J Neurophysiol. 2014 Dec 1;112(11):2729-44. doi: 10.1152/jn.00725.2013. Epub 2014 Sep 10.
2
Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):810-9. doi: 10.1109/TNSRE.2014.2306000. Epub 2014 Feb 12.
4
Accuracy assessment of a surface electromyogram decomposition system in human first dorsal interosseus muscle.
J Neural Eng. 2014 Apr;11(2):026007. doi: 10.1088/1741-2560/11/2/026007. Epub 2014 Feb 21.
5
Assessment of validity of a high-yield surface electromyogram decomposition.
J Neuroeng Rehabil. 2013 Sep 23;10:99. doi: 10.1186/1743-0003-10-99.
6
Motor unit pool organization examined via spike-triggered averaging of the surface electromyogram.
J Neurophysiol. 2013 Sep;110(5):1205-20. doi: 10.1152/jn.00301.2012. Epub 2013 May 22.
7
Neural correlates of task-related changes in physiological tremor.
J Neurophysiol. 2013 Jul;110(1):170-6. doi: 10.1152/jn.00041.2013. Epub 2013 Apr 17.
8
Reliability of spike triggered averaging of the surface electromyogram for motor unit action potential estimation.
Muscle Nerve. 2013 Oct;48(4):557-70. doi: 10.1002/mus.23819. Epub 2013 Sep 2.
9
EMG signal decomposition using motor unit potential train validity.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):265-74. doi: 10.1109/TNSRE.2012.2218287. Epub 2012 Sep 27.
10
Short-term synchrony in diverse motor nuclei presumed to receive different extents of direct cortical input.
J Neurophysiol. 2012 Dec;108(12):3264-75. doi: 10.1152/jn.01154.2011. Epub 2012 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验