Department of Nutrition, Food Science and Physiology, University of Navarra, C/Irunlarrea s/n, 31008 Pamplona, Spain Centre for Nutrition Research, University of Navarra, Irunlarrea St. E-31008 Pamplona, Spain.
Nutrition and Obesity group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
Benef Microbes. 2015 Mar;6(1):97-111. doi: 10.3920/BM2013.0097.
The gastrointestinal tract harbours a 'superorganism' called the gut microbiota, which is known to play a crucial role in the onset and development of diverse diseases. This internal ecosystem, far from being a static environment, can be manipulated by diet and dietary components. Feeding animals with high-fat sucrose (HFS) diets entails diet-induced obesity, a model which is usually used in research to mimic the obese phenotype of Western societies. The aim of the present study was to identify gut microbiota dysbiosis and associated metabolic changes produced in male Wistar rats fed a HFS diet for 6 weeks and compare it with the basal microbial composition. For this purpose, DNA extracted from faeces at baseline and after treatment was analysed by amplification of the V4-V6 region of the 16S ribosomal DNA (rDNA) gene using 454 pyrosequencing. Short-chain fatty acids, i.e. acetate, propionate and butyrate, were also evaluated by gas chromatography-mass spectrometry. At the end of the treatment, gut microbiota composition significantly differed at phylum level (Firmicutes, Bacteroidetes and Proteobacteria) and class level (Erisypelotrichi, Deltaproteobacteria, Bacteroidia and Bacilli). Interestingly, the class Clostridia showed a significant decrease after HFS diet treatment, which correlated with visceral adipose tissue, and is likely mediated by dietary carbohydrates. Of particular interest, Clostridium cluster XIVa species were significantly reduced and changes were identified in the relative abundance of other specific bacterial species (Mitsuokella jalaludinii, Eubacterium ventriosum, Clostridium sp. FCB90-3, Prevotella nanceiensis, Clostridium fusiformis, Clostridium sp. BNL1100 and Eubacterium cylindroides) that, in some cases, showed opposite trends to their relative families. These results highlight the relevance of characterising gut microbial population differences at species level and contribute to understand the plausible link between diet and specific gut bacterial species that are able to influence the inflammatory status, intestinal barrier function and obesity development.
胃肠道中存在一个被称为肠道微生物群的“超级生物体”,它在多种疾病的发生和发展中起着至关重要的作用。这个内部生态系统远非静态环境,可以通过饮食和饮食成分来操纵。用高脂肪蔗糖(HFS)饮食喂养动物会导致饮食诱导的肥胖,这是一种常用于研究的模型,用于模拟西方社会的肥胖表型。本研究的目的是鉴定雄性 Wistar 大鼠喂食 HFS 饮食 6 周后出现的肠道微生物群失调和相关代谢变化,并将其与基础微生物组成进行比较。为此,使用 454 焦磷酸测序法对基线和治疗后粪便中提取的 DNA 进行扩增 V4-V6 区 16S 核糖体 DNA(rDNA)基因分析。通过气相色谱-质谱联用仪还评估了短链脂肪酸,即乙酸盐、丙酸盐和丁酸盐。在治疗结束时,肠道微生物群落组成在门水平(Firmicutes、Bacteroidetes 和 Proteobacteria)和纲水平(Erisypelotrichi、Deltaproteobacteria、Bacteroidia 和 Bacilli)上有显著差异。有趣的是,在 HFS 饮食治疗后,Clostridia 纲显著减少,这与内脏脂肪组织有关,可能是由膳食碳水化合物介导的。特别值得注意的是,Clostridium cluster XIVa 物种的丰度显著降低,其他特定细菌物种的相对丰度发生变化(Mitsuokella jalaludinii、Eubacterium ventriosum、Clostridium sp. FCB90-3、Prevotella nanceiensis、Clostridium fusiformis、Clostridium sp. BNL1100 和 Eubacterium cylindroides),在某些情况下,它们的相对丰度与它们的相对家族相反。这些结果强调了在物种水平上描述肠道微生物种群差异的重要性,并有助于理解饮食与能够影响炎症状态、肠道屏障功能和肥胖发展的特定肠道细菌物种之间的潜在联系。