Shahriari Arjang, Wurz Jillian, Bahadur Vaibhav
Department of Mechanical Engineering, University of Texas at Austin , Austin, Texas 78712, United States.
Langmuir. 2014 Oct 14;30(40):12074-81. doi: 10.1021/la502456d. Epub 2014 Oct 1.
The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid toward the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperatures exceeding 500 °C, which is more than 8 times the Leidenfrost superheat for organic solvents. Robust Leidenfrost state suppression is observed for a variety of liquids, ranging from low electrical conductivity organic solvents to electrically conducting salt solutions. Elimination of the vapor layer increases heat dissipation capacity by more than 1 order of magnitude. Heat removal capacities exceeding 500 W/cm(2) are measured, which is 5 times the critical heat flux (CHF) of water on common engineering surfaces. Furthermore, the heat transfer rate can be electrically controlled by the applied voltage. The underlying science is explained via a multiphysics analytical model which captures the coupled electrostatic-fluid-thermal transport phenomena underlying electrostatic Leidenfrost state suppression. Overall, this work uncovers the physics underlying dryout prevention and demonstrates electrically tunable boiling heat transfer with ultralow power consumption.
著名的莱顿弗罗斯特效应是指在液体与下方热表面之间形成一层蒸汽层。这种绝缘蒸汽层会严重降低热传递并导致表面干涸。我们测量了伴随莱顿弗罗斯特状态的静电抑制而产生的热传递增强和干涸预防效果。蒸汽层中的界面电场可将液体吸引至表面并促进润湿。这一原理甚至在超过500°C的超高温下也能抑制干涸,该温度是有机溶剂莱顿弗罗斯特过热度的8倍多。对于从低电导率有机溶剂到导电盐溶液等多种液体,都观察到了对莱顿弗罗斯特状态的有力抑制。蒸汽层的消除使散热能力提高了一个多数量级。测量到的热去除能力超过500 W/cm²,这是普通工程表面上水的临界热流密度(CHF)的5倍。此外,热传递速率可通过施加的电压进行电控制。通过一个多物理场分析模型解释了其背后的科学原理,该模型捕捉了静电抑制莱顿弗罗斯特状态背后的耦合静电-流体-热传输现象。总体而言,这项工作揭示了预防干涸背后的物理原理,并展示了具有超低功耗的电可调沸腾热传递。