Hoelzle David J, Varghese Bino A, Chan Clara K, Rowat Amy C
Department of Integrative Biology and Physiology, University of California, Los Angeles; Department of Aerospace and Mechanical Engineering, University of Notre Dame.
Department of Integrative Biology and Physiology, University of California, Los Angeles; Molecular Imaging Center, University of Southern California.
J Vis Exp. 2014 Sep 3(91):e51474. doi: 10.3791/51474.
Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~10(2) cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior.
在此,我们详细介绍一种微流控装置的设计、制造和使用方法,该装置能够高效评估大量单个细胞的可变形性。通常,在1小时的实验中可以获取约10²个细胞的数据。一个自动化图像分析程序能够对图像数据进行高效的实验后分析,使处理过程在几小时内完成。我们的装置几何结构独特,细胞必须通过一系列微米级的收缩通道发生变形,从而能够检测单个细胞的初始变形和随时间的松弛情况。本文展示了该方法对人早幼粒细胞白血病(HL - 60)细胞的适用性。利用压力驱动流使细胞通过微米级收缩通道发生变形,我们观察到人类早幼粒细胞(HL - 60)细胞在通过后续收缩通道之前,会在第一个收缩通道处短暂阻塞,阻塞的中位时间为9.3毫秒,后续每个收缩通道的中位通过时间为4.0毫秒。相比之下,经全反式维甲酸处理(中性粒细胞型)的HL - 60细胞在第一个收缩通道处的阻塞时间仅为4.3毫秒,后续通过每个收缩通道的中位时间为3.3毫秒。该方法能够深入了解细胞的粘弹性本质,并最终揭示这种行为的分子起源。