Suppr超能文献

一种用于探测细胞可变形性的微流控技术。

A microfluidic technique to probe cell deformability.

作者信息

Hoelzle David J, Varghese Bino A, Chan Clara K, Rowat Amy C

机构信息

Department of Integrative Biology and Physiology, University of California, Los Angeles; Department of Aerospace and Mechanical Engineering, University of Notre Dame.

Department of Integrative Biology and Physiology, University of California, Los Angeles; Molecular Imaging Center, University of Southern California.

出版信息

J Vis Exp. 2014 Sep 3(91):e51474. doi: 10.3791/51474.

Abstract

Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~10(2) cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior.

摘要

在此,我们详细介绍一种微流控装置的设计、制造和使用方法,该装置能够高效评估大量单个细胞的可变形性。通常,在1小时的实验中可以获取约10²个细胞的数据。一个自动化图像分析程序能够对图像数据进行高效的实验后分析,使处理过程在几小时内完成。我们的装置几何结构独特,细胞必须通过一系列微米级的收缩通道发生变形,从而能够检测单个细胞的初始变形和随时间的松弛情况。本文展示了该方法对人早幼粒细胞白血病(HL - 60)细胞的适用性。利用压力驱动流使细胞通过微米级收缩通道发生变形,我们观察到人类早幼粒细胞(HL - 60)细胞在通过后续收缩通道之前,会在第一个收缩通道处短暂阻塞,阻塞的中位时间为9.3毫秒,后续每个收缩通道的中位通过时间为4.0毫秒。相比之下,经全反式维甲酸处理(中性粒细胞型)的HL - 60细胞在第一个收缩通道处的阻塞时间仅为4.3毫秒,后续通过每个收缩通道的中位时间为3.3毫秒。该方法能够深入了解细胞的粘弹性本质,并最终揭示这种行为的分子起源。

相似文献

1
A microfluidic technique to probe cell deformability.
J Vis Exp. 2014 Sep 3(91):e51474. doi: 10.3791/51474.
2
3
Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis.
Talanta. 2013 Jul 15;111:178-82. doi: 10.1016/j.talanta.2013.03.004. Epub 2013 Mar 13.
4
Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions.
J Biol Chem. 2013 Mar 22;288(12):8610-8618. doi: 10.1074/jbc.M112.441535. Epub 2013 Jan 25.
5
Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.
7
Cell squeezing as a robust, microfluidic intracellular delivery platform.
J Vis Exp. 2013 Nov 7(81):e50980. doi: 10.3791/50980.
8
Microfluidic micropipette aspiration for measuring the deformability of single cells.
Lab Chip. 2012 Aug 7;12(15):2687-95. doi: 10.1039/c2lc40205j. Epub 2012 May 23.
9
Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
Am J Hematol. 2013 Aug;88(8):682-9. doi: 10.1002/ajh.23476. Epub 2013 Jul 3.
10
Standing surface acoustic wave (SSAW)-based cell washing.
Lab Chip. 2015 Jan 7;15(1):331-8. doi: 10.1039/c4lc00903g.

引用本文的文献

3
A constriction channel analysis of astrocytoma stiffness and disease progression.
Biomicrofluidics. 2021 Mar 16;15(2):024103. doi: 10.1063/5.0040283. eCollection 2021 Mar.
4
Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function.
FASEB J. 2019 Mar;33(3):3997-4006. doi: 10.1096/fj.201801429RR. Epub 2018 Dec 3.
7
Microfluidic generation of transient cell volume exchange for convectively driven intracellular delivery of large macromolecules.
Mater Today (Kidlington). 2018 Sep;21(7):703-712. doi: 10.1016/j.mattod.2018.03.002. Epub 2018 Apr 17.
8
Kernel-Based Microfluidic Constriction Assay for Tumor Sample Identification.
ACS Sens. 2018 Aug 24;3(8):1510-1521. doi: 10.1021/acssensors.8b00301. Epub 2018 Jul 18.
9
Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.

本文引用的文献

1
Electrical measurement of red blood cell deformability on a microfluidic device.
Lab Chip. 2013 Aug 21;13(16):3275-83. doi: 10.1039/c3lc50427a. Epub 2013 Jun 25.
2
Characterizing deformability and surface friction of cancer cells.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7580-5. doi: 10.1073/pnas.1218806110. Epub 2013 Apr 22.
3
Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions.
J Biol Chem. 2013 Mar 22;288(12):8610-8618. doi: 10.1074/jbc.M112.441535. Epub 2013 Jan 25.
4
High-throughput biophysical measurement of human red blood cells.
Lab Chip. 2012 Jul 21;12(14):2560-7. doi: 10.1039/c2lc21210b. Epub 2012 May 14.
5
A portable, benchtop photolithography system based on a solid-state light source.
Small. 2011 Nov 18;7(22):3144-7. doi: 10.1002/smll.201101209. Epub 2011 Sep 8.
6
Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
Lab Chip. 2011 Sep 21;11(18):3174-81. doi: 10.1039/c1lc20473d. Epub 2011 Aug 8.
7
A microfabricated deformability-based flow cytometer with application to malaria.
Lab Chip. 2011 Mar 21;11(6):1065-73. doi: 10.1039/c0lc00472c. Epub 2011 Feb 3.
8
Open access microfluidic device for the study of cell migration during chemotaxis.
Integr Biol (Camb). 2010 Nov;2(11-12):648-58. doi: 10.1039/c0ib00110d. Epub 2010 Oct 15.
9
SU-8 force sensing pillar arrays for biological measurements.
Lab Chip. 2009 May 21;9(10):1449-54. doi: 10.1039/b818622g. Epub 2009 Feb 27.
10
Deformability study of breast cancer cells using microfluidics.
Biomed Microdevices. 2009 Jun;11(3):557-64. doi: 10.1007/s10544-008-9262-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验