Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States.
Nano Lett. 2014 Oct 8;14(10):5547-54. doi: 10.1021/nl501933q. Epub 2014 Sep 29.
The most efficient architecture for achieving high donor/acceptor interfacial area in organic photovoltaics (OPVs) would employ arrays of vertically interdigitated p- and n- type semiconductor nanopillars (NPs). Such morphology could have an advantage in bulk heterojunction systems; however, precise control of the dimension morphology in a crystalline, interpenetrating architecture has not yet been realized. Here we present a simple, yet facile, crystallization technique for the growth of vertically oriented NPs utilizing a modified thermal evaporation technique that hinges on a fast deposition rate, short substrate-source distance, and ballistic mass transport. A broad range of organic semiconductor materials is beneficial from the technique to generate NP geometries. Moreover, this technique can also be generalized to various substrates, namely, graphene, PEDOT-PSS, ZnO, CuI, MoO3, and MoS2. The advantage of the NP architecture over the conventional thin film counterpart is demonstrated with an increase of power conversion efficiency of 32% in photovoltaics. This technique will advance the knowledge of organic semiconductor crystallization and create opportunities for the fabrication and processing of NPs for applications that include solar cells, charge storage devices, sensors, and vertical transistors.
在有机光伏电池(OPV)中实现高施主/受主界面面积的最有效结构将采用垂直交错的 p 型和 n 型半导体纳米柱(NPs)阵列。这种形态在体异质结系统中可能具有优势;然而,在结晶、互穿结构中精确控制尺寸形态尚未实现。在这里,我们提出了一种简单而有效的垂直取向 NPs 生长的结晶技术,利用改进的热蒸发技术,该技术依赖于快速沉积速率、短的基底-源距离和弹道质量传输。广泛的有机半导体材料都受益于该技术来生成 NP 几何形状。此外,该技术还可以推广到各种基底,即石墨烯、PEDOT-PSS、ZnO、CuI、MoO3 和 MoS2。与传统的薄膜相比,NP 结构的优势在光电方面表现为功率转换效率提高了 32%。该技术将推进有机半导体结晶的知识,并为包括太阳能电池、电荷存储器件、传感器和垂直晶体管在内的应用的 NPs 的制造和加工创造机会。