Suppr超能文献

基于功能磁共振成像活动的视觉图像重建稀疏模型。

Sparse models for visual image reconstruction from fMRI activity.

作者信息

Wang Linyuan, Tong Li, Yan Bin, Lei Yu, Wang Lijun, Zeng Ying, Hu Guoen

机构信息

National Digital Switching System Engineering & Technological R & D Center, Zhengzhou 450002, China.

出版信息

Biomed Mater Eng. 2014;24(6):2963-9. doi: 10.3233/BME-141116.

Abstract

Statistical model is essential for constraint-free visual image reconstruction, as it may overfit training data and have poor generalization. In this study, we investigate the sparsity of the distributed patterns of visual representation and introduce a suitable sparse model for the visual image reconstruction experiment. We use elastic net regularization to model the sparsity of the distributed patterns for local decoder training. We also investigate the relationship between the sparsity of the visual representation and sparse models with different parameters. Our experimental results demonstrate that the sparsity needed by visual reconstruction models differs from the sparsest one, and the l2-norm regularization introduced in the EN model improves not only the robustness of the model but also the generalization performance of the learning results. We therefore conclude that the sparse learning model for visual image reconstruction should reflect the spasity of visual perceptual experience, and have a solution with high but not the highest sparsity, and some robustness as well.

摘要

统计模型对于无约束视觉图像重建至关重要,因为它可能会过度拟合训练数据且泛化能力较差。在本研究中,我们研究了视觉表征分布模式的稀疏性,并为视觉图像重建实验引入了合适的稀疏模型。我们使用弹性网络正则化来对局部解码器训练的分布模式稀疏性进行建模。我们还研究了视觉表征的稀疏性与不同参数的稀疏模型之间的关系。我们的实验结果表明,视觉重建模型所需的稀疏性不同于最稀疏的稀疏性,并且弹性网络(EN)模型中引入的 l2 范数正则化不仅提高了模型的鲁棒性,还提高了学习结果的泛化性能。因此,我们得出结论,用于视觉图像重建的稀疏学习模型应反映视觉感知经验的稀疏性,并且具有高但不是最高的稀疏性的解决方案以及一定的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验