Suppr超能文献

硼氢化锂纳米复合材料氢吸附性能的原位X射线拉曼光谱研究。

In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites.

作者信息

Miedema Piter S, Ngene Peter, van der Eerden Ad M J, Sokaras Dimosthenis, Weng Tsu-Chien, Nordlund Dennis, Au Yuen S, de Groot Frank M F

机构信息

Department of Inorganic Chemistry and Heterogeneous Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

出版信息

Phys Chem Chem Phys. 2014 Nov 7;16(41):22651-8. doi: 10.1039/c4cp02918f.

Abstract

Nanoconfined alkali metal borohydrides are promising materials for reversible hydrogen storage applications, but the characterization of hydrogen sorption in these materials is difficult. Here we show that with in situ X-ray Raman spectroscopy (XRS) we can track the relative amounts of intermediates and final products formed during de- and re-hydrogenation of nanoconfined lithium borohydride (LiBH4) and therefore we can possibly identify the de- and re-hydrogenation pathways. In the XRS of nanoconfined LiBH4 at different points in the de- and re-hydrogenation, we identified phases that lead to the conclusion that de- and re-hydrogenation pathways in nanoconfined LiBH4 are different from bulk LiBH4: intercalated lithium (LiCx), boron and lithium hydride were formed during de-hydrogenation, but as well Li2B12H12 was observed indicating that there is possibly some bulk LiBH4 present in the nanoconfined sample LiBH4-C as prepared. Surprisingly, XRS revealed that the de-hydrogenated products of the LiBH4-C nanocomposites can be partially rehydrogenated to about 90% of Li2B12H12 and 2-5% of LiBH4 at a mild condition of 1 bar H2 and 350 °C. This suggests that re-hydrogenation occurs via the formation of Li2B12H12. Our results show that XRS is an elegant technique that can be used for in and ex situ study of the hydrogen sorption properties of nanoconfined and bulk light-weight metal hydrides in energy storage applications.

摘要

纳米受限碱金属硼氢化物是用于可逆储氢应用的有前景的材料,但对这些材料中氢吸附的表征很困难。在此我们表明,通过原位X射线拉曼光谱(XRS),我们可以追踪纳米受限硼氢化锂(LiBH₄)脱氢和再氢化过程中形成的中间体和最终产物的相对量,因此我们有可能确定脱氢和再氢化途径。在纳米受限LiBH₄脱氢和再氢化不同阶段的XRS中,我们鉴定出了一些相,这些相得出的结论是,纳米受限LiBH₄中的脱氢和再氢化途径与块状LiBH₄不同:脱氢过程中形成了嵌入的锂(LiCₓ)、硼和氢化锂,但也观察到了Li₂B₁₂H₁₂,这表明在制备的纳米受限样品LiBH₄-C中可能存在一些块状LiBH₄。令人惊讶的是,XRS显示,在1 bar H₂和350 °C的温和条件下,LiBH₄-C纳米复合材料的脱氢产物可以部分再氢化为约90%的Li₂B₁₂H₁₂和2 - 5%的LiBH₄。这表明再氢化是通过Li₂B₁₂H₁₂的形成发生的。我们的结果表明,XRS是一种出色的技术,可用于储能应用中纳米受限和块状轻质金属氢化物氢吸附特性的原位和非原位研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验