From the Division of Infectious Diseases and the Department of Pediatrics and.
the Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, and.
J Biol Chem. 2014 Nov 7;289(45):30937-49. doi: 10.1074/jbc.M114.599407. Epub 2014 Sep 17.
Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa(-/-) bone marrow-derived macrophages transfected with FcγRIa into FcγRIa(-/-) newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis.
大肠杆菌 K1 引起的新生儿脑膜炎是一种严重的中枢神经系统疾病。我们已经确定巨噬细胞是大肠杆菌 K1 在宿主中繁殖并达到细菌载量阈值的允许生态位,这是疾病发作的前提。在这里,我们通过实验证明 FcγRIa 中的三个 N-糖链与大肠杆菌 K1 的 OmpA 相互作用,以结合并进入巨噬细胞。将 FcγRIa(-/-)骨髓来源的巨噬细胞转染 FcγRIa 并过继转移到 FcγRIa(-/-)新生小鼠中,可使它们易感染大肠杆菌 K1 引起的脑膜炎。相比之下,接受 FcγRIa 转染的骨髓来源的巨噬细胞中 N-糖基化位点 1、4 和 5 突变为丙氨酸的小鼠对大肠杆菌 K1 感染具有抗性。我们的分子动力学和模拟研究预测,N-糖基化 5 在由环 3 和 4 形成的 OmpA 桶状结构的结合位点上表现出强结合,而 N-糖基化 1 和 4 与 OmpA 的环 1、3 和 4 相互作用在尖端区域。分子建模数据还表明 IgG 结合位点在入侵过程中不起作用。实验性突变 IgG 结合位点在体外不影响大肠杆菌 K1 进入巨噬细胞或在新生小鼠中引起脑膜炎的发生。总之,这些实验和计算研究的整合揭示了 FcγRIa 中的 N-糖链如何与大肠杆菌 K1 的 OmpA 相互作用,从而引发疾病发病机制。