Suppr超能文献

用于控制动力型经胫假肢的连续踝关节运动学的套接内肌电预测

Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.

作者信息

Farmer Samuel, Silver-Thorn Samuel, Voglewede Philip, Beardsley Scott A

出版信息

J Neural Eng. 2014 Oct;11(5):056027. doi: 10.1088/1741-2560/11/5/056027. Epub 2014 Sep 23.

Abstract

OBJECTIVE

Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees.

APPROACH

Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal 'prediction' interval between the EMG/kinematic input and the model's estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval.

MAIN RESULT

Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking.

SIGNIFICANCE

The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model's predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response.

摘要

目的

动力机器人假肢需要自然感觉的用户界面和强大的控制方案。在此,我们研究了非线性自回归模型在三名经胫截肢者中连续将经胫假肢的运动学和在接受腔内记录的肌电图(EMG)活动映射到假肢踝关节角度未来估计值的能力。

方法

在水平跑步机行走过程中,根据EMG采样窗口的大小以及EMG/运动学输入与模型对未来踝关节角度估计之间的时间“预测”间隔,对模型性能进行跨受试者检查,以表征模型误差、采样窗口和预测间隔之间的权衡。

主要结果

在所有受试者中,估计的踝关节角度与实际运动的偏差对EMG采样窗口的变化具有鲁棒性,并随着预测间隔系统性增加。对于长达150毫秒的预测间隔,模型在整个步态周期内对踝关节角度估计的平均误差小于6°。EMG对模型预测的贡献因受试者而异,但始终集中在单肢支撑与双肢支撑之间的转换阶段,并捕捉了水平行走过程中典型踝关节运动学的变化。

意义

使用自回归建模方法利用自然残留肌肉活动连续预测关节运动学,为用户直接(透明)控制假肢关节提供了机会。该模型的预测能力可能在克服假肢信号处理和驱动延迟方面特别有用,提供更仿生的踝关节响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验