IEEE Trans Cybern. 2014 Nov;44(11):2232-41. doi: 10.1109/TSMC.2013.2297398. Epub 2014 Jan 20.
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
这封技术信函提出了一种多特征和多核支持向量机(MFMK-SVM)方法,以实现更可靠和更稳健的人形机器人分割性能。通过局部同质性模型和 Gabor 滤波器提取像素级强度、梯度和 C1 SMF 特征,这些特征将作为 MFMK-SVM 模型的输入。它可以为样本提供多种特征,便于 MFMK-SVM 模型的实现和高效计算。通过在聚类优化过程中集成模糊准则,提出了一种新的聚类方法,称为特征有效性-间隔型 2 型模糊 C-均值(FV-IT2FCM)聚类算法,以通过迭代优化提高聚类结果的稳健性和可靠性。此外,聚类有效性用于选择训练样本,以便对 MFMK-SVM 模型进行学习。MFMK-SVM 场景分割方法能够充分利用场景图像的多种特征和多核的能力。在 BSDS 数据集和真实自然场景图像上的实验证明了我们提出的方法的优越性能。