Saini Simran G, Liu Chuang, Zhang Peijun, Lee Tina H
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.
Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260.
Mol Biol Cell. 2014 Dec 1;25(24):3942-53. doi: 10.1091/mbc.E14-08-1284. Epub 2014 Sep 24.
The membrane-anchored atlastin GTPase couples nucleotide hydrolysis to the catalysis of homotypic membrane fusion to form a branched endoplasmic reticulum network. Trans dimerization between atlastins anchored in opposing membranes, accompanied by a cross-over conformational change, is thought to draw the membranes together for fusion. Previous studies on the conformational coupling of atlastin to its GTP hydrolysis cycle have been carried out largely on atlastins lacking a membrane anchor. Consequently, whether fusion involves a discrete tethering step and, if so, the potential role of GTP hydrolysis and cross-over in tethering remain unknown. In this study, we used membrane-anchored atlastins in assays that separate tethering from fusion to dissect the requirements for each. We found that tethering depended on GTP hydrolysis, but, unlike fusion, it did not depend on cross-over. Thus GTP hydrolysis initiates stable head-domain contact in trans to tether opposing membranes, whereas cross-over formation plays a more pivotal role in powering the lipid rearrangements for fusion.
膜锚定的atlastin GTP酶将核苷酸水解与同型膜融合的催化作用偶联起来,以形成分支状的内质网网络。锚定在相对膜上的atlastin之间的反式二聚化,伴随着交叉构象变化,被认为会将膜拉近以实现融合。先前关于atlastin与其GTP水解循环的构象偶联的研究,主要是在缺乏膜锚定的atlastin上进行的。因此,融合是否涉及一个离散的拴系步骤,如果是,那么GTP水解和交叉在拴系中的潜在作用仍然未知。在本研究中,我们在将拴系与融合分开的实验中使用了膜锚定的atlastin,以剖析每个步骤的要求。我们发现拴系依赖于GTP水解,但与融合不同的是,它不依赖于交叉。因此,GTP水解启动反式稳定的头部结构域接触以拴系相对的膜,而交叉形成在推动融合所需的脂质重排中起更关键的作用。