Suppr超能文献

TEMPO:可充电 Li-O₂ 电池的移动催化剂。

TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries.

机构信息

Institute of Physical Chemistry, Justus-Liebig-Universität Gießen , Heinrich-Buff-Ring 58, 35392 Gießen, Germany.

出版信息

J Am Chem Soc. 2014 Oct 22;136(42):15054-64. doi: 10.1021/ja508400m. Epub 2014 Oct 13.

Abstract

Nonaqueous Li-O2 batteries are an intensively studied future energy storage technology because of their high theoretical energy density. However, a number of barriers prevent a practical application, and one of the major challenges is the reduction of the high charge overpotential: Whereas lithium peroxide (Li2O2) is formed during discharge at around 2.7 V (vs Li(+)/Li), its electrochemical decomposition during the charge process requires potentials up to 4.5 V. This high potential gap leads to a low round-trip efficiency of the cell, and more importantly, the high charge potential causes electrochemical decomposition of other cell constituents. Dissolved oxidation catalysts can act as mobile redox mediators (RM), which enable the oxidation of Li2O2 particles even without a direct electric contact to the positive electrode. Herein we show that the addition of 10 mM TEMPO (2,2,6,6-tetramethylpiperidinyloxyl), homogeneously dissolved in the electrolyte, provides a distinct reduction of the charging potentials by 500 mV. Moreover, TEMPO enables a significant enhancement of the cycling stability leading to a doubling of the cycle life. The efficiency of the TEMPO mediated catalysis was further investigated by a parallel monitoring of the cell pressure, which excludes a considerable contribution of a parasitic shuttle (i.e., internal ionic short circuit) to the anode during cycling. We prove the suitability of TEMPO by a systematic study of the relevant physical and chemical properties, i.e., its (electro)chemical stability, redox potential, diffusion coefficient and the influence on the oxygen solubility. Furthermore, the charging mechanisms of Li-O2 cells with and without TEMPO were compared by combining different electrochemical and analytical techniques.

摘要

非水锂-氧电池因其具有高理论能量密度而成为一种受到广泛研究的未来储能技术。然而,许多障碍阻止了其实际应用,其中一个主要挑战是降低高充电过电位:虽然过氧化锂 (Li2O2) 在放电时在约 2.7 V(相对于 Li(+)/Li)形成,但在充电过程中其电化学分解需要高达 4.5 V 的电势。这个高电位差导致电池的往返效率低,更重要的是,高充电电位导致电池其他成分的电化学分解。溶解的氧化催化剂可以作为可移动的氧化还原介质 (RM),即使与正极没有直接的电接触,也能使 Li2O2 颗粒氧化。在此,我们表明,在电解液中均匀溶解 10 mM TEMPO(2,2,6,6-四甲基哌啶氧自由基)可将充电电位明显降低 500 mV。此外,TEMPO 还能显著提高循环稳定性,使循环寿命延长一倍。通过对电池压力的平行监测进一步研究了 TEMPO 介导的催化效率,该监测排除了在循环过程中阳极存在明显的寄生穿梭(即内部离子短路)的可能性。我们通过对相关物理和化学性质(即电化学稳定性、氧化还原电位、扩散系数以及对氧气溶解度的影响)的系统研究,证明了 TEMPO 的适用性。此外,通过结合不同的电化学和分析技术,比较了有 TEMPO 和无 TEMPO 的 Li-O2 电池的充电机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验