Suppr超能文献

用于识别科罗拉多州丹佛市院外心脏骤停(OHCA)高风险普查区的多聚类分析

Multiple cluster analysis for the identification of high-risk census tracts for out-of-hospital cardiac arrest (OHCA) in Denver, Colorado.

作者信息

Nassel Ariann F, Root Elisabeth D, Haukoos Jason S, McVaney Kevin, Colwell Christopher, Robinson James, Eigel Brian, Magid David J, Sasson Comilla

机构信息

University of Alabama, Birmingham, AL, United States.

University of Colorado, Boulder, CO, United States.

出版信息

Resuscitation. 2014 Dec;85(12):1667-73. doi: 10.1016/j.resuscitation.2014.08.029. Epub 2014 Sep 27.

Abstract

BACKGROUND

Prior research has shown that high-risk census tracts for out-of-hospital cardiac arrest (OHCA) can be identified. High-risk neighborhoods are defined as having a high incidence of OHCA and a low prevalence of bystander cardiopulmonary resuscitation (CPR). However, there is no consensus regarding the process for identifying high-risk neighborhoods.

OBJECTIVE

We propose a novel summary approach to identify high-risk neighborhoods through three separate spatial analysis methods: Empirical Bayes (EB), Local Moran's I (LISA), and Getis Ord Gi* (Gi*) in Denver, Colorado.

METHODS

We conducted a secondary analysis of prospectively collected Emergency Medical Services data of OHCA from January 1, 2009 to December 31, 2011 from the City and County of Denver, Colorado. OHCA incidents were restricted to those of cardiac etiology in adults ≥18 years. The OHCA incident locations were geocoded using Centrus. EB smoothed incidence rates were calculated for OHCA using Geoda and LISA and Gi* calculated using ArcGIS 10.

RESULTS

A total of 1102 arrests in 142 census tracts occurred during the study period, with 887 arrests included in the final sample. Maps of clusters of high OHCA incidence were overlaid with maps identifying census tracts in the below the Denver County mean for bystander CPR prevalence. Five census tracts identified were designated as Tier 1 high-risk tracts, while an additional 7 census tracts where designated as Tier 2 high-risk tracts.

CONCLUSION

This is the first study to use these three spatial cluster analysis methods for the detection of high-risk census tracts. These census tracts are possible sites for targeted community-based interventions to improve both cardiovascular health education and CPR training.

摘要

背景

先前的研究表明,可以识别出院外心脏骤停(OHCA)的高危普查区。高危社区被定义为OHCA发病率高且旁观者心肺复苏(CPR)普及率低的社区。然而,关于识别高危社区的过程尚无共识。

目的

我们提出一种新颖的汇总方法,通过三种独立的空间分析方法来识别高危社区:经验贝叶斯(EB)、局部莫兰指数(LISA)和Getis Ord Gi*(Gi*),研究地点为科罗拉多州丹佛市。

方法

我们对2009年1月1日至2011年12月31日期间从科罗拉多州丹佛市县前瞻性收集的OHCA紧急医疗服务数据进行了二次分析。OHCA事件仅限于18岁及以上成年人的心脏病因事件。OHCA事件发生地点使用Centrus进行地理编码。使用Geoda计算OHCA的EB平滑发病率,使用ArcGIS 10计算LISA和Gi*。

结果

在研究期间,142个普查区共发生了1102次心脏骤停,最终样本包括887次心脏骤停。OHCA高发病率集群地图与识别丹佛县旁观者CPR普及率均值以下普查区的地图叠加。确定的5个普查区被指定为1级高危区,另外7个普查区被指定为2级高危区。

结论

这是第一项使用这三种空间聚类分析方法检测高危普查区的研究。这些普查区可能是开展有针对性的社区干预措施的地点,以改善心血管健康教育和CPR培训。

相似文献

1
Multiple cluster analysis for the identification of high-risk census tracts for out-of-hospital cardiac arrest (OHCA) in Denver, Colorado.
Resuscitation. 2014 Dec;85(12):1667-73. doi: 10.1016/j.resuscitation.2014.08.029. Epub 2014 Sep 27.
2
Identifying high-risk geographic areas for cardiac arrest using three methods for cluster analysis.
Acad Emerg Med. 2012 Feb;19(2):139-46. doi: 10.1111/j.1553-2712.2011.01284.x.
5
Spatiotemporal analysis of out-of-hospital cardiac arrest in the City of Los Angeles, 2011-2019.
Resuscitation. 2021 Aug;165:110-118. doi: 10.1016/j.resuscitation.2021.05.013. Epub 2021 Jun 10.
7
Regions of High Out-Of-Hospital Cardiac Arrest Incidence and Low Bystander CPR Rates in Victoria, Australia.
PLoS One. 2015 Oct 8;10(10):e0139776. doi: 10.1371/journal.pone.0139776. eCollection 2015.
8
Historical neighborhood redlining and bystander CPR disparities in out-of-hospital cardiac arrest.
Resuscitation. 2024 Aug;201:110264. doi: 10.1016/j.resuscitation.2024.110264. Epub 2024 Jun 6.
9
Geospatial analysis for targeting out-of-hospital cardiac arrest intervention.
Am J Prev Med. 2013 Aug;45(2):137-42. doi: 10.1016/j.amepre.2013.03.013.
10
Identification of out-of-hospital cardiac arrest clusters using a geographic information system.
Acad Emerg Med. 2005 Jan;12(1):81-4. doi: 10.1197/j.aem.2004.08.044.

引用本文的文献

1
A Geospatial Analysis of the Lung Cancer Burden in Philadelphia, Using Pennsylvania Cancer Registry Data from 2008-2017.
Int J Environ Res Public Health. 2025 Mar 20;22(3):455. doi: 10.3390/ijerph22030455.
4
Strategic placement of volunteer responder system defibrillators.
Health Care Manag Sci. 2024 Dec;27(4):503-524. doi: 10.1007/s10729-024-09685-4. Epub 2024 Sep 10.
5
Spatial dependence of non-traumatic out-of-hospital cardiac arrest in a Swiss region: A retrospective analysis.
Resusc Plus. 2024 Jul 13;19:100713. doi: 10.1016/j.resplu.2024.100713. eCollection 2024 Sep.
7
Where do we need to improve resuscitation? Spatial analysis of out-of-hospital cardiac arrest incidence and mortality.
Scand J Trauma Resusc Emerg Med. 2023 Oct 26;31(1):63. doi: 10.1186/s13049-023-01131-8.
9
Socioeconomic Risk Factors for Pediatric Out-of-hospital Cardiac Arrest: A Statewide Analysis.
West J Emerg Med. 2023 Apr 28;24(3):572-578. doi: 10.5811/westjem.59107.
10
Racial, ethnic, and socioeconomic disparities in out-of-hospital cardiac arrest within the United States: Now is the time for change.
Heart Rhythm O2. 2022 Dec 16;3(6Part B):857-863. doi: 10.1016/j.hroo.2022.07.009. eCollection 2022 Dec.

本文引用的文献

1
Heart disease and stroke statistics--2014 update: a report from the American Heart Association.
Circulation. 2014 Jan 21;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80. Epub 2013 Dec 18.
3
A tale of two cities: the role of neighborhood socioeconomic status in spatial clustering of bystander CPR in Austin and Houston.
Resuscitation. 2013 Jun;84(6):752-9. doi: 10.1016/j.resuscitation.2013.01.007. Epub 2013 Jan 11.
4
Association of neighborhood characteristics with bystander-initiated CPR.
N Engl J Med. 2012 Oct 25;367(17):1607-15. doi: 10.1056/NEJMoa1110700.
5
Identifying high-risk geographic areas for cardiac arrest using three methods for cluster analysis.
Acad Emerg Med. 2012 Feb;19(2):139-46. doi: 10.1111/j.1553-2712.2011.01284.x.
7
Examining the contextual effects of neighborhood on out-of-hospital cardiac arrest and the provision of bystander cardiopulmonary resuscitation.
Resuscitation. 2011 Jun;82(6):674-9. doi: 10.1016/j.resuscitation.2011.02.002. Epub 2011 Mar 31.
8
Small area variations in out-of-hospital cardiac arrest: does the neighborhood matter?
Ann Intern Med. 2010 Jul 6;153(1):19-22. doi: 10.7326/0003-4819-153-1-201007060-00255. Epub 2010 Jun 1.
9
Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis.
Circ Cardiovasc Qual Outcomes. 2010 Jan;3(1):63-81. doi: 10.1161/CIRCOUTCOMES.109.889576. Epub 2009 Nov 10.
10
Regional variation in out-of-hospital cardiac arrest incidence and outcome.
JAMA. 2008 Sep 24;300(12):1423-31. doi: 10.1001/jama.300.12.1423.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验