Suppr超能文献

用于软骨组织工程的基于细胞外基质和精氨酸-甘氨酸-天冬氨酸修饰的光聚合水凝胶。

Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering.

作者信息

Kim Hwan D, Heo Jiseung, Hwang Yongsung, Kwak Seon-Yeong, Park Ok Kyu, Kim Hyunbum, Varghese Shyni, Hwang Nathaniel S

机构信息

1 School of Chemical and Biological Engineering, BioMAX Institute, Seoul National University , Seoul, Republic of Korea.

出版信息

Tissue Eng Part A. 2015 Feb;21(3-4):757-66. doi: 10.1089/ten.TEA.2014.0233. Epub 2014 Nov 14.

Abstract

Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application.

摘要

关节软骨损伤是老龄化人口中一个持续且日益严重的问题。实现完全修复或功能恢复的策略仍然是一项挑战。基于光聚合的水凝胶因其独特的生物活性、灵活的合成方法、多样的成分和理想的物理特性,长期以来在软骨组织工程中受到关注。在本研究中,我们通过将聚乙二醇(PEG)大分子单体与甲基丙烯酸化的细胞外基质(ECM)分子(透明质酸和硫酸软骨素[CS])以及整合素结合肽(RGD肽)共聚,在基于光聚合的水凝胶中引入了独特的生物活性。结果表明,通过肌动蛋白细胞骨架结构观察到的细胞形态强烈依赖于ECM成分的类型以及整合素结合部分的存在。此外,含有整合素结合RGD部分的基于CS的水凝胶增加了包封软骨细胞的润滑素(或称为表面区蛋白[SZP])基因表达。另外,基于CS的水凝胶表现出细胞响应性降解,与其他水凝胶相比,导致DNA、糖胺聚糖和胶原蛋白积累增加。本研究表明,CS微环境中整合素介导的相互作用为软骨组织工程应用提供了一种最佳的水凝胶支架。

相似文献

1
Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering.
Tissue Eng Part A. 2015 Feb;21(3-4):757-66. doi: 10.1089/ten.TEA.2014.0233. Epub 2014 Nov 14.
5
Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.
Biomaterials. 2017 Mar;120:11-21. doi: 10.1016/j.biomaterials.2016.12.015. Epub 2016 Dec 20.
6
Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair.
Biomed Mater. 2020 Jun 24;15(4):045019. doi: 10.1088/1748-605X/ab8318.
7
Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
Acta Biomater. 2014 Aug;10(8):3409-20. doi: 10.1016/j.actbio.2014.04.013. Epub 2014 Apr 24.
8
Porous poly(vinyl alcohol)-hydrogel matrix-engineered biosynthetic cartilage.
Tissue Eng Part A. 2011 Feb;17(3-4):301-9. doi: 10.1089/ten.TEA.2010.0322. Epub 2010 Oct 12.
10
Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels.
Acta Biomater. 2009 Oct;5(8):2832-46. doi: 10.1016/j.actbio.2009.05.039. Epub 2009 Jun 7.

引用本文的文献

1
The application of ECM-derived biomaterials in cartilage tissue engineering.
Mechanobiol Med. 2023 Jul 5;1(1):100007. doi: 10.1016/j.mbm.2023.100007. eCollection 2023 Sep.
2
Bioceramic-mediated chondrocyte hypertrophy promotes calcified cartilage formation for rabbit osteochondral defect repair.
Bioact Mater. 2024 Jun 14;40:306-317. doi: 10.1016/j.bioactmat.2024.06.018. eCollection 2024 Oct.
3
Peptide-Based Biomaterials for Bone and Cartilage Regeneration.
Biomedicines. 2024 Jan 29;12(2):313. doi: 10.3390/biomedicines12020313.
4
Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors.
Nanomicro Lett. 2023 May 24;15(1):136. doi: 10.1007/s40820-023-01109-2.
5
7
Immunomodulatory PEG-CRGD Hydrogels Promote Chondrogenic Differentiation of PBMSCs.
Pharmaceutics. 2022 Nov 28;14(12):2622. doi: 10.3390/pharmaceutics14122622.
8
Incorporation of a Collagen-Binding Chondroitin Sulfate Molecule to a Collagen Type I and II Blend Hydrogel for Cartilage Tissue Engineering.
ACS Biomater Sci Eng. 2022 Mar 14;8(3):1247-1257. doi: 10.1021/acsbiomaterials.1c01248. Epub 2022 Feb 8.
9
Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering.
Front Bioeng Biotechnol. 2021 Dec 15;9:773636. doi: 10.3389/fbioe.2021.773636. eCollection 2021.
10
Advanced hydrogels for the repair of cartilage defects and regeneration.
Bioact Mater. 2020 Oct 10;6(4):998-1011. doi: 10.1016/j.bioactmat.2020.09.030. eCollection 2021 Apr.

本文引用的文献

1
Three-dimensional perfused cell culture.
Biotechnol Adv. 2014 Mar-Apr;32(2):243-54. doi: 10.1016/j.biotechadv.2013.10.006. Epub 2013 Oct 29.
2
Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.
Biomaterials. 2013 Jul;34(22):5571-80. doi: 10.1016/j.biomaterials.2013.04.004. Epub 2013 Apr 24.
6
Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels.
Cell Tissue Res. 2011 Jun;344(3):499-509. doi: 10.1007/s00441-011-1153-2. Epub 2011 Apr 19.
7
Supramolecular gels: building bridges.
Nat Chem. 2010 Mar;2(3):162-3. doi: 10.1038/nchem.566.
10
Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.
Biomaterials. 2010 Jun;31(17):4639-56. doi: 10.1016/j.biomaterials.2010.02.044. Epub 2010 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验